细胞核系统的控制中心图像及di值3.157,2.948

COX-1/COX-2抑制剂筛选模型的建立COX-2选择性抑制剂的筛选及活性研究--《中国协和医科大学》2004年博士论文
COX-1/COX-2抑制剂筛选模型的建立COX-2选择性抑制剂的筛选及活性研究
【摘要】:分离人环氧合酶-1(human cyclooxygenase 1,hCOX-1)和环氧合酶-2(human cyclooxygenase 2,hCOX-2)的基因,分别导入中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞,获得稳定高表达hCOX-1和hCOX-2的CHO[hCOX-1]和CHO[hCOX-2]细胞。以CHO[hCOX-1]和CHO[hCOX-2]为酶源,建立了COX-1/COX-2抑制剂筛选模型,以在相同的遗传背景下评价化合物对人源COX-1和COX-2活性的抑制作用。该模型中,1×10~(-5)mol/L Rofecoxib对COX-1没有抑制作用;Indomethacin和SC-560在1×10~(-5)~1×10~(-8)mol/L浓度下对COX-1有浓度依赖性抑制作用,IC_(50)分别为1.12×10~(-8)mol/L、6.20×10~(-9)mol/L;Imrecoxib在1×10~(-7)mol/L浓度下对COX-1的抑制率约为50%。Rofecoxib在1×10~(-6)~1×10~(-9)mol/L浓度下对COX-2有浓度依赖性抑制作用,IC_(50)为1.44×10~(-8)mol/L。Indomethacin、Imrecoxib和SC-560在1×10~(-5)~1×10~(-8)mol/L浓度下对COX-2有浓度依赖性抑制作用,IC_(50)分别为2.97×10~(-8)mol/L、4.78×10~(-8)mol/L和8.42×10~(-7)mol/L。另外,对缺失外显子9的hCOX-1剪切突变体(hCOX-1 splice variant,hCOX-1sv)进行了初步功能研究。转染hCOX-1sv cDNA的CHO细胞未检测到产生PGE_2的显著活性。RT-PCR结果表明U937细胞中其mRNA水平约是COX-1全长mRNA的1/3,Rofecoxib处理使之升高至正常对照的1.5倍。
为开发有自主知识产权的新型抗炎药,利用以内源花生四烯酸为底物、基于小鼠腹腔巨噬细胞的COX-1/COX-2抑制剂筛选模型筛选了110余种化合物。发现双叔丁基苯甲酰胺类似物XZB-0702和尼美舒利类似物GCB-0328、GCB-0329、GCB-0339B和GCB-0344对COX-2活性具有较强抑制作用。XZB-0702抑制COX-2的IC_(50)在1×10~(-7)mol/L和1×10~(-6)mol/L之间。GCB-0328、GCB-0329、GCB-0339B和GCB-0344抑制COX-2活性的IC_(50)分别为1.90×10~(-8)mol/L、1.82×10~(-7)mol/L、1.94×10~(-7)mol/L和1.80×10~(-7)mol/L,抑制COX-1活性的IC_(50)分别为<1×10~(-8)mol/L、2.73×10~(-7)mol/L、1.57×10~(-7)mol/L和9.22×10~(-7)mol/L。XZB-0702还能够抑制5-LOX活性,其IC_(50)为9.28×10~(-7)mol/L。10mg/kg(p.o.)XZB-0702显著减少醋酸诱导的小鼠扭体次数。20mg/kg(p.o.)及40mg/kg(p.o.)的GCB-0328和GCB-0344显著减少醋酸诱导的小鼠扭体次数;20mg/kg(p.o.)及40mg/kg(p.o.)的GCB-0344显著抑制角叉菜胶诱导的大鼠足肿胀;20mg/kg(p.o.)GCB-0328显著抑制角叉菜胶诱导的小鼠足肿胀。40mg/kg(p.o.)GCB-0328及20mg/kg(p.o.)GCB-0344显著抑制巴豆油诱导的小鼠耳肿胀。这些化合物有较强抗炎、镇痛作用,可将其作为先导物加以优化和改造。
【学位授予单位】:中国协和医科大学【学位级别】:博士【学位授予年份】:2004【分类号】:R965.1
欢迎:、、)
支持CAJ、PDF文件格式
【参考文献】
中国期刊全文数据库
陈晓红,王伟,程桂芳;[J];中国生物化学与分子生物学报;2004年04期
朱秀嫒,徐桂芳,张祖济;[J];药学学报;1979年11期
李宁元,朱秀媛;[J];药学学报;1988年02期
【共引文献】
中国期刊全文数据库
潘献柱;汪晓庆;谢琳琳;汪思应;王林;;[J];安徽医药;2009年08期
柳雪枚,李虹奇,肖宣,于德泉;[J];动物学报;1992年03期
胡士星,李绍珍;[J];国外医学.眼科学分册;1990年05期
郭芳,师晨霞,孟祥琴,郭鸣放,刘秀书,武占军,宋建徽,张永健,王永利;[J];河北医科大学学报;2003年02期
张亚兰;罗燕;刘春兰;冯丽娟;王成志;魏亮;;[J];畜牧与饲料科学;2009年04期
陶上乘;赵春莲;;[J];宁夏医学杂志;1991年01期
王志文,韩炳生,贾秀荣,程爱国,付春梅,袁强,张爱国;[J];四川中医;2000年04期
张海娟,张士贤,程桂芳;[J];世界科学技术;2001年05期
李宁元;;[J];生理科学进展;1989年04期
陈正爱;曲香芝;尹大维;徐正哲;;[J];时珍国医国药;2006年01期
中国博士学位论文全文数据库
黄显章;[D];湖北中医药大学;2011年
段玉忠;[D];第三军医大学;2003年
林力;[D];北京中医药大学;2005年
钟淼;[D];中国协和医科大学;1998年
李良成;[D];中国协和医科大学;2001年
李宁元;[D];中国协和医科大学;1988年
侯琦;[D];中国协和医科大学;2000年
郭颖;[D];中国协和医科大学;2000年
沈放;[D];中国协和医科大学;2003年
吴凯群;[D];四川大学;2005年
中国硕士学位论文全文数据库
李硕;[D];吉林农业大学;2011年
徐涛;[D];河北联合大学;2011年
戴航;[D];广西大学;2003年
张骏艳;[D];安徽医科大学;2005年
潘献柱;[D];安徽医科大学;2006年
吴芬宏;[D];四川大学;2006年
杨卫豪;[D];江南大学;2008年
【二级参考文献】
中国期刊全文数据库
朱秀嫒,徐桂芳,张祖济;[J];药学学报;1979年11期
【相似文献】
中国期刊全文数据库
李勇,曾甫清;[J];湘南学院学报(自然科学版);2004年03期
张源潮,潘正论;[J];山东医药;2002年18期
夏靖燕,谢强敏;[J];国外医药.合成药.生化药.制剂分册;2002年04期
何绥平,张威,毛璐,甄健存;[J];药物不良反应杂志;2004年02期
龚萍,黄光英;[J];生殖与避孕;2004年06期
张娟,王旻,汪志军,周建伟,张玉彬;[J];药物生物技术;2003年01期
,陈锡美;[J];世界临床药物;2003年10期
赵伟,黄烽;[J];中华风湿病学杂志;2004年07期
郭迎萍;[J];天津医药;2004年04期
祝丹;[J];中国医院药学杂志;2002年06期
中国重要会议论文全文数据库
刘洁;陈谦明;;[A];中华口腔医学会第六届全国口腔黏膜病学术会议论文集[C];2004年
邱丽颖;杜斌;杨志勇;程建青;李英;范红斌;朱颖越;;[A];中国药理学会第九次全国会员代表大会暨全国药理学术会议论文集[C];2007年
李光艳;胡金凤;吉海杰;苑玉和;陈乃宏;;[A];中国药理学会第十次全国学术会议专刊[C];2009年
刘天麟;倪赤友;谢建华;喻爱明;;[A];中国化工学会农药专业委员会第八届年会论文集[C];1996年
周严;赵淼;刘倩;杨春元;郝延明;;[A];第五届中国功能材料及其应用学术会议论文集Ⅰ[C];2004年
许发达;马成;;[A];中国化学会第四届有机化学学术会议论文集[C];2005年
肖巍;金先波;邓媛;汪的华;胡晓宏;陈政;;[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年
吴达旭;林璋;张旭东;;[A];第十二届全国波谱学学术会议论文摘要集[C];2002年
卢葛覃;陈忠;;[A];第八届全国波谱学学术会议论文摘要集[C];1994年
钱艳;孟伟峰;庞冀燕;林永成;关永源;刘捷;王冠蕾;;[A];2008心血管药理学术研讨会论文汇编[C];2008年
中国重要报纸全文数据库
贾源隆;[N];健康报;2003年
;[N];中国高新技术产业导报;2001年
刘霞;[N];科技日报;2011年
许琦敏;[N];文汇报;2011年
;[N];中国中医药报;2003年
贡雪芃;[N];农村医药报(汉);2009年
张孟军;[N];科技日报;2005年
贾源隆;[N];大众卫生报;2005年
王开珍;[N];中国消费者报;2002年
林湘艳;[N];保健时报;2009年
中国博士学位论文全文数据库
陈晓红;[D];中国协和医科大学;2004年
敖桂珍;[D];中国药科大学;2002年
胡建明;[D];福州大学;2005年
刘悦;[D];中国协和医科大学;2006年
王敏敏;[D];中国协和医科大学;1997年
蒋忠;[D];中国协和医科大学;1997年
田泽;[D];中国协和医科大学;2005年
侯书杰;[D];中国协和医科大学;2005年
季红;[D];四川大学;2006年
成云飞;[D];复旦大学;2007年
中国硕士学位论文全文数据库
张桂杰;[D];吉林大学;2004年
杨艳峰;[D];山东大学;2009年
王正国;[D];四川大学;2006年
刘金辉;[D];山西医科大学;2004年
蒋代华;[D];第三军医大学;2004年
庄惠强;[D];福建医科大学;2010年
张瑞红;[D];河北医科大学;2010年
童明富;[D];南昌大学;2010年
喇海英;[D];山西医科大学;2011年
张五德;[D];泸州医学院;2011年
&快捷付款方式
&订购知网充值卡
400-819-9993The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective | SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspectiveShoujun ZhuYubin SongXiaohuan ZhaoJieren ShaoJunhu ZhangBai YangReview Article
At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated π-domains, which are determine the surface state, which is determined by hybridization of the carbon backbone and the conne the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink-enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.carbon dots graphene quantum dots carbon nanodots polymer dots photoluminescence mechanism This is a preview of subscription content,
to check accessUnable to display preview.&[1]Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed.
2010, 49, .[2]Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S.-T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem.
2012, 22, 2.[3]Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechol.
2009, 4, 773–780.[4]Gokus, T.; Nair, R. R.; Bonetti, A.; Bohmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A. Making graphene luminescent by oxygen plasma treatment. ACS Nano
2009, 3, .[5]Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I.-S.; Chen, C.-W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater.
2010, 22, 505–509.[6]Zhu, S. J.; Tang, S. J.; Zhang, J. H.; Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun.
2012, 48, .[7]Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun.
2012, 48, .[8]Zhang, Z. P.; Zhang, J.; Chen, N.; Qu, L. T. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci.
2012, 5, .[9]Li, L. L.; Wu, G. H.; Yang, G. H.; Peng, J.; Zhao, J. W.; Zhu, J.-J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale
2013, 5, .[10]Bacon, M.; Bradley, S. J.; Nann, T. Graphene quantum dots. Part. Part. Syst. Charact.
2014, 31, 415–428.[11]Zhou, X. J.; Guo, S. W.; Zhang, J. Y. Solution-processable graphene quantum dots. ChemPhysChem
2013, 14, .[12]Lin, L. P.; Rong, M. C.; Luo, F.; Chen, D. M.; Wang, Y. R.; Chen, X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem.
2014, 54, 83–102.[13]Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater.
2012, 24, .[14]Qiao, Z.-A.; Huo, Q. S.; Chi, M. F.; Veith, G. M.; Binder, A. J.; Dai, S. A “ship-in-a-bottle” approach to synthesis of polymer dots@silica or polymer dots@carbon core-shell nanospheres. Adv. Mater.
2012, 24, .[15]Zhu, S. J.; Zhang, J. H; Wang, L.; Song, Y. B.; Zhang, G. Y.; Wang, H. Y.; Yang, B. A general route to make non-conjugated linear polymers luminescent. Chem. Commun.
2012, 48, 1.[16]Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc.
2005, 127, 1.[17]Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol.
2012, 7, 11–23.[18]Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y.-P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res.
2013, 46, 171–180.[19]Song, Y. B.; Zhu, S. J.; Yang, B. Bioimaging based on fluorescent carbon dots. RSC Adv.
2014, 4, 2.[20]Feng, X. L.; Wu, J. S.; Ai, M.; Pisula, W.; Zhi, L. J.; Rabe, J. P.; Müllen, K. Triangle-shaped polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed.
2007, 46, .[21]Yan, X.; Cui, X.; Li, L.-S. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc.
2010, 132, .[22]Qiao, Z.-A.; Wang, Y. F.; Gao, Y.; Li, H. W.; Dai, T. Y.; Liu, Y. L.; Huo, Q. S. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun.
2010, 46, .[23]Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H.; Yang, X. B.; Lee, S.-T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed.
2010, 49, .[24]Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L. H.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett.
2012, 12, 844–849.[25]Xu, X.Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc.
2004, 126, 1.[26]Shinde, D. B.; Pillai, V. K. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem.-Eur. J.
2012, 18, 1.[27]Dong, Y. Q.; Chen, C. Q.; Zheng, X. T.; Gao, L. L.; Cui, Z. M.; Yang, H. B.; Guo, C. X.; Chi, Y. W.; Li, C. M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem.
2012, 22, .[28]Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed.
2007, 46, .[29]Tao, H. Q.; Yang, K.; Ma, Z.; Wan, J. M.; Zhang, Y. J.; Kang, Z. H.; Liu, Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small
2012, 8, 281–290.[30]Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun.
2011, 47, .[31]Zhu, S. J.; Zhang, J. H.; Liu, X.; Li, B.; Wang, X. F.; Tang, S. J.; Meng, Q. N.; Li, Y. F.; Shi, C.; Hu, R. et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv.
2012, 2, .[32]Lu, J.; Yang, J.-X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano
2009, 3, .[33]Zheng, L. Y.; Chi, Y. W.; Dong, Y. Q.; Lin, J. P.; Wang, B. B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc.
2009, 131, .[34]Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater.
2010, 22, 734–738.[35]Lin, L. X.; Zhang, S. W. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun.
2012, 48, 1.[36]Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys.Chem. B
2006, 110, 831–836.[37]Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc.
2006, 128, .[38]Lee, J.; Kim, K.; Park, W. I.; Kim, B.-H.; Park, J. H.; Kim, T.-H.; Bong, S.; Kim, C.-H.; Chae, G.; Jun, M. et al. Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett.
2012, 12, .[39]Fan, L. L.; Zhu, M.; Lee, X.; Zhang, R. J.; Wang, K. L.; Wei, J. Q.; Zhong, M. L.; Wu, D. H.; Zhu, H. W. Direct synthesis of graphene quantum dots by chemical vapor deposition. Part. Part. Syst. Charact.
2013, 30, 764–769.[40]Zhao, Q.-L.; Zhang, Z.-L.; Huang, B.-H.; Peng, J.; Zhang, M.; Pang, D.-W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun.
2008, .[41]Bao, L.; Zhang, Z.-L.; Tian, Z.-Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D.-W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater.
2011, 23, .[42]Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater.
2011, 23, 776–780.[43]Deng, J. H.; Lu, Q. J.; Mi, N. X.; Li, H. T.; Liu, M. L.; Xu, M. C.; Tan, L.; Xie, Q. J.; Zhang, Y. Y.; Yao, S. Z. Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.-Eur. J.
2014, 20, .[44]Zhou, X. J.; Zhang, Y.; Wang, C.; Wu, X. C.; Yang, Y. Q.; Zheng, B.; Wu, H. X.; Guo, S. W.; Zhang, J. Y. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano
2012, 6, .[45]Yang, Z.-C.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X.-H.; Tan, H.; Chang, A. Y.; Li, X.; Wang, J. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun.
2011, 47, 1.[46]Zhu, H.; Wang, X. L.; Li, Y. L.; Wang, Z. J.; Yang, F.; Yang, X. R. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun.
2009, .[47]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small
2008, 4, 455–458.[48]Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater.
2009, 21, .[49]Zong, J.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Li, C. Z. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem. Commun.
2011, 47, 764–766.[50]Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano
2012, 6, .[51]Wang, J.; Wang, C.-F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed.
2012, 51, .[52]Zhang, C.; Liu, Y.; Xiong, X.-Q.; Peng, L.-H.; Gan, L.; Chen, C.-F.; Xu, H.-B. Three-dimensional nanographene based on triptycene: Synthesis and its application in fluorescence imaging. Org. Lett.
2012, 14, .[53]Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. J. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc.
2007, 129, 1.[54]Shen, J. H.; Zhu, Y. H.; Chen, C.; Yang, X. L.; Li, C. Z. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun.
2011, 47, .[55]Zhu, S. J.; Wang, L.; Zhou, N.; Zhao, X. H.; Song, Y. B.; Maharjan, S.; Zhang, J. H.; Lu, L. J.; Wang, H. Y.; Yang, B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: From the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun.
2014, 50, 1.[56]Zheng, H. Z.; Wang, Q. L.; Long, Y. J.; Zhang, H. J.; Huang, X. X.; Zhu, R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun.
2011, 47, 1.[57]Nie, H.; Li, M. J.; Li, Q. S.; Liang, S. J.; Tan, Y. Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater.
2014, 26, .[58]Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater.
2012, 24, .[59]Wang, Y.; Kalytchuk, S.; Zhang, Y.; Shi, H. C.; Kershaw, S. V.; Rogach, A. L. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J. Phys. Chem. Lett.
2014, 5, .[60]Wang, Y. Y.; Li, Y.; Yan, Y.; Xu, J.; Guan, B. Y.; Wang, Q.; Li, J. Y.; Yu, J. H. Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chem. Commun.
2013, 49, .[61]Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C
2009, 113, 1.[62]Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res.
2011, 4, 908–920.[63]Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep.
2013, 3, 1473.[64]Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep.
2014, 4, 5294.[65]Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H.; Wang, H. C.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed.
2013, 52, .[66]Gan, Z. X.; Wu, X. L.; Zhou, G. X.; Shen, J. C.; Chu, P. K. Is there real upconversion photoluminescence from graphene quantum dots? Adv. Opt. Mater.
2013, 1, 554–558.[67]Wen, X. M.; Yu, P.; Toh, Y. R.; Ma, X. Q.; Tang, J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun.
2014, 50, .[68]Qu, S. N.; Liu, X. Y.; Guo, X. Y.; Chu, M. H.; Zhang, L. G.; Shen, D. Z. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Adv. Funct. Mater.
2014, 24, .[69]Fan, L. S.; Hu, Y. W.; Wang, X.; Zhang, L. L.; Li, F. H.; Han, D. X.; Li, Z. G.; Zhang, Q. X.; Wang, Z. X.; Niu, L. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta
2012, 101, 192–197.[70]Luo, P. J. G.; Sahu, S.; Yang, S.-T.; Sonkar, S. K.; Wang, J. P.; Wang, H. F.; LeCroy, G. E.; Cao, L.; Sun, Y.-P. Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B
2013, 1, .[71]Esteves da Silva, J. C. G.; Gon?alves, H. M. R. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem.
2011, 30, .[72]Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.
2008, 1, 203–212.[73]Goh, E. J.; Kim, K. S.; Kim, Y. R.; Jung, H. S.; Beack, S.; Kong, W. H.; Scarcelli, G.; Yun, S. H.; Hahn, S. K. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules
2012, 13, .[74]Kong, B.; Zhu, A. W.; Ding, C. Q.; Zhao, X. M.; Li, B.; Tian, Y. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater.
2012, 24, .[75]Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials
2012, 33, .[76]Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano
2013, 7, .[77]Qian, J.; Wang, D.; Cai, F.-H.; Xi, W.; Peng, L.; Zhu, Z.-F.; He, H.; Hu, M.-L.; He, S. L. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew. Chem. Int. Ed.
2012, 51, 1.[78]Chien, C.-T.; Li, S.-S.; Lai, W.-J.; Yeh, Y.-C.; Chen, H.-A.; Chen, I.-S.; Chen, L.-C.; Chen, K.-H.; Nemoto, T.; Isoda, S. et al. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed.
2012, 51, .[79]Luo, Z. T.; Vora, P. M.; Mele, E. J.; Johnson, A. T. C.; Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett.
2009, 94, 111909.[80]Galande, C.; Mohite, A. D.; Naumov, A. V.; Gao, W.; Ci, L. J.; Ajayan, A.; Gao, H.; Srivastava, A.; Weisman, R. B.; Ajayan, P. M. Quasi-molecular fluorescence from graphene oxide. Sci. Rep.
2011, 1, 85.[81]Shang, J. Z.; Ma, L.; Li, J. W.; Ai, W.; Yu, T.; Gurzadyan, G. G. The origin of fluorescence from graphene oxide. Sci. Rep.
2012, 2, 792.[82]Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater.
2009, 8, 235–242.[83]Radovic, L. R.; Bockrath, B. On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc.
2005, 127, .[84]Xu, Q. F.; Zhou, Q.; Hua, Z.; Xue, Q.; Zhang, C. F.; Wang, X. Y.; Pan, D. Y.; Xiao, M. Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano
2013, 7, 1.[85]Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano
2013, 7, .[86]Kumar, G. S.; Roy, R.; Sen, D.; Ghorai, U. K.; Thapa, R.; Mazumder, N.; Saha, S.; Chattopadhyay, K. K. Amino-functionalized graphene quantum dots: Origin of tunable heterogeneous photoluminescence. Nanoscale
2014, 6, .[87]Qian, Z. S.; Ma, J. J.; Shan, X. Y.; Shao, L. X.; Zhou, J.; Chen, J. R.; Feng, H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv.
2013, 3, 1.[88]Wang, L.; Wang, H.-Y.; Wang, Y.; Zhu, S.-J.; Zhang, Y.-L.; Zhang, J.-H.; Chen, Q.-D.; Han, W.; Xu, H.-L.; Yang, B. et al. Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy. Adv. Mater.
2013, 25, .[89]Wang, L.; Zhu, S.-J.; Wang, H.-Y.; Wang, Y.-F.; Hao, Y.-W.; Zhang, J.-H.; Chen, Q.-D.; Zhang, Y.-L.; Han, W.; Yang, B. et al. Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy. Adv. Opt. Mater.
2013, 1, 264–271.[90]Zhu, S. J.; Zhang, J. H.; Tang, S. J.; Qiao, C. Y.; Wang, L.; Wang, H. Y.; Liu, X.; Li, B.; Li, Y. F.; Yu, W. L. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater.
2012, 22, .[91]Mei, Q. S.; Zhang, Z. P. Photoluminescent graphene oxide ink to print sensors onto microporous membranes for versatile visualization bioassays. Angew. Chem. Int. Ed.
2012, 51, .[92]Liu, F.; Jang, M.-H.; Ha, H. D.; Kim, J. H.; Cho, Y.-H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater.
2013, 25, .[93]Li, X. M.; Lau, S. P.; Tang, L. B.; Ji, R. B.; Yang, P. Z. Multicolour light emission from chlorine-doped graphene quantum dots. J. Mater. Chem. C
2013, 1, .[94]Luo, P. H.; Ji, Z.; Li, C.; Shi, G. Q. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale
2013, 5, .[95]Sun, H. J.; Gao, N.; Wu, L.; Ren, J. S.; Wei, W. L.; Qu, X. G. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem.-Eur. J.
2013, 19, 1.[96]Feng, Y. Q.; Zhao, J. P.; Yan, X. B.; Tang, F. L.; Xue, Q. J. Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon
2014, 66, 334–339.[97]Sun, Y. Q.; Wang, S. Q.; Li, C.; Luo, P. H.; Tao, L.; Wei, Y.; Shi, G. Q. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys.
2013, 15, .[98]Jiang, F.; Chen, D. Q.; Li, R. M.; Wang, Y. C.; Zhang, G. Q.; Li, S. M.; Zheng, J. P.; Huang, N. Y.; Gu, Y.; Wang, C. R. et al. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale
2013, 5, .[99]Lingam, K.; Podila, R.; Qian, H. J.; Serkiz, S.; Rao, A. M. Evidence for edge-state photoluminescence in graphene quantum dots. Adv. Funct. Mater.
2013, 23, .[100]Chen, C.-F.; Park, C.-H.; Boudouris, B. W.; Horng, J.; Geng, B. S.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature
2011, 471, 617–620.[101]Li, L.-S.; Yan, X. Colloidal graphene quantum dots. J. Phys. Chem. Lett.
2010, 1, .[102]Tomovi?, Z.; Watson, M. D.; Müllen, K. Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed.
2004, 43, 755–758.[103]Mueller, M. L.; Yan, X.; Dragnea, B.; Li, L.-S. Slow hot-carrier relaxation in colloidal graphene quantum dots. Nano Lett.
2011, 11, 56–60.[104]Zhu, S. J.; Wang, L.; Li, B.; Song, Y. B.; Zhao, X. H.; Zhang, G. Y.; Zhang, S. T.; Lu, S. Y.; Zhang, J. H.; Wang, H. Y. et al. Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon
2014, 77, 462–472.[105]Kim, S.; Hwang, S. W.; Kim, M.-K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S.-H. et al. Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano
2012, 6, .[106]Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C
2014, 2, .[107]Lui, C. H.; Mak, K. F.; Shan, J.; Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett.
2010, 105, 127404.[108]Kim, R.; Perebeinos, V.; Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B
2011, 84, 075449.[109]Fuyuno, N.; Kozawa, D.; Miyauchi, Y.; Mouri, S.; Kitaura, R.; Shinohara, H.; Yasuda, T.; Komatsu, N.; Matsuda, K. Drastic change in photoluminescence properties of graphene quantum dots by chromatographic separation. Adv. Opt. Mater.
2014, 2, 983–989.[110]Tang, L. B.; Ji, R. B.; Li, X. M.; Teng, K. S.; Lau, S. P. Size-dependent structural and optical characteristics of glucose-derived graphene quantum dots. Part. Part. Syst. Charact.
2013, 30, 523–531.[111]Kwon, W.; Rhee, S.-W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun.
2012, 48, .[112]Kwon, W.; Lee, G.; Do, S.; Joo, T.; Rhee, S.-W. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small
2014, 10, 506–513.[113]Wang, X.; Cao, L.; Yang, S.-T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y.-P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. Int. Ed.
2010, 49, .[114]Das, S. K.; Liu, Y. Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett.
2014, 14, 620–625.[115]Yu, P.; Wen, X. M.; Toh, Y.-R.; Tang, J. Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C
2012, 116, 2.[116]Wen, X. M.; Yu, P.; Toh, Y.-R.; Hao, X. T.; Tang, J. Intrinsic and extrinsic fluorescence in carbon nanodots: Ultrafast time-resolved fluorescence and carrier dynamics. Adv. Opt. Mater.
2013, 1, 173–178.[117]Wang, L.; Zhu, S.-J.; Wang, H.-Y.; Qu, S.-N.; Zhang, Y.-L.; Zhang, J.-H.; Chen, Q.-D.; Xu, H.-L.; Han, W.; Yang, B. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano
2014, 8, .[118]Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed.
2012, 51, 1.[119]Sun, H. J.; Wu, L.; Gao, N.; Ren, J. S.; Qu, X. G. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl. Mater. Inter.
2013, 5, .[120]Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater.
2012, 22, .[121]Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc.
2012, 134, 747–750.[122]Song, Y. B.; Zhu, S. J.; Xiang, S. Y.; Zhao, X. H.; Zhang, J. H.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale
2014, 6, .[123]Ding, D.; Goh, C. C.; Feng, G. X.; Zhao, Z. J.; Liu, J.; Liu, R. R.; Tomczak, N.; Geng, J. L.; Tang, B. Z.; Ng, L. G.; et al. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv. Mater.
2013, 25, .[124]Lai, T. T.; Zheng, E. H.; Chen, L. X.; Wang, X. Y.; Kong, L. C.; You, C. P.; Ruan, Y. M.; Weng, X. X. Hybrid carbon source for producing nitrogen-doped polymer nanodots: One-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III). Nanoscale
2013, 5, .[125]Sun, Y.; Cao, W. P.; Li, S. L.; Jin, S. B.; Hu, K. L.; Hu, L. M.; Huang, Y. Y.; Gao, X. Y.; Wu, Y.; Liang, X.-J. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Sci. Rep.
2013, 3, 3036.[126]Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed.
2013, 52, .[127]Zhu, S. J.; Zhang, J. H.; Song, Y. B.; Zhang, G. Y.; Zhang, H.; Yang, B. Fluorescent nanocomposite based on PVA polymer dots. Acta Chim. Sinica
2012, 70, .[128]Sun, M.; Hong, C.-Y.; Pan, C. Y. A unique aliphatic tertiary amine chromophore: Fluorescence, polymer structure, and application in cell imaging. J. Am. Chem. Soc.
2012, 134, 2.[129]Zhu, Q.; Qiu, F.; Zhu, B. S.; Zhu, X. Y. Hyperbranched polymers for bioimaging. RSC Adv.
2013, 3, .[130]Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun.
2009, .[131]Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev.
2011, 40, .[132]Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem.
2012, 22, .[133]Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj, R.; Chand, S. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc.
2011, 133, .[134]Zhang, X. Y.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y. H.; Wang, P.; Zhang, T. Q.; Zhao, Y.; Zhang, H. Z. et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano
2013, 7, 1.[135]Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Zhang, J. M.; Li, C. Z. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem.
2012, 36, 97–101.[136]Liu, W.-W.; Feng, Y.-Q.; Yan, X.-B.; Chen, J.-T.; Xue, Q.-J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater.
2013, 23, .[137]Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal.Chem.
2011, 83, .[138]Liu, J.-J.; Zhang, X.-L.; Cong, Z.-X.; Chen, Z.-T.; Yang, H.-H.; Chen, G.-N. Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale
2013, 5, .[139]Li, X.; Zhu, S. J.; Xu, B.; Ma, K.; Zhang, J. H.; Yang, B.; Tian, W. J. Self-assembled graphene quantum dots induced by cytochrome c: A novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale
2013, 5, .[140]Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater.
2013, 25, .[141]Markovic, Z. M.; Ristic, B. Z.; Arsikin, K. M.; Klisic, D. G.; Harhaji-Trajkovic, L. M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Kravic-Stevovic, T. K.; Jovanovic, S. P.; Milenkovic, M. M. et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials
2012, 33, .[142]Xie, Z.; Wang, F.; Liu, C.-Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater.
2012, 24, .[143]Zhang, G. Y.; Zhang, H.; Zhang, X. R.; Zhu, S. J.; Zhang, L.; Meng, Q. N.; Wang, M. Y.; Li, Y. F.; Yang, B. Embedding graphene nanoparticles into poly(N,N′-dimethylacrylamine) to prepare transparent nanocomposite films with high refractive index. J. Mater. Chem.
2012, 22, 2.Shoujun Zhu1Yubin Song1Xiaohuan Zhao1Jieren Shao1Junhu Zhang1Bai Yang11.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunP. R. China
We use cookies to improve your experience with our site.}

我要回帖

更多关于 细胞核 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信