超前滞后补偿偿电容应加在放大电路中的哪一级最有效

君,已阅读到文档的结尾了呢~~
放大电路中的反馈ppt 放大电路中的负反馈 放大电路 场效应管 负反馈放大电路 放大电路中的反馈习题 放大电路的工作原理 负反馈放大电路实验
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
放大电路中的反馈
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口下载作业帮安装包
扫二维码下载作业帮
1.75亿学生的选择
若负反馈放大电路产生自激振荡,为什么总是在上限频率最低的那一级电路加补偿电容
13哥30w汫煻
电容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等. 1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电.
为您推荐:
其他类似问题
扫描下载二维码电容在电路中的作用 【范文十篇】
电容在电路中的作用
范文一:按电路中电容的作用
电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路现象,使得电容器有着种种不同的用途,例如在电动马达中,我们用它来产生相移; 在照相闪光灯中,用它来产生高能量的瞬间放电等等; 而在电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。下面是一些电容的作用列表:
●耦合电容:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。起隔直流通交流作用。耦合电容的容量一般在 0.1μF~ 1μF 之间,以使用云母、 丙烯、陶瓷等损耗较小的电容
●滤波电容:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。必须使用电解电容,滤波电容用于功率放大器时,其值应为10000μF 以上,用于前置放大器时,容量为 1000μF 左右即可 ,同时也应并联几个薄膜电容,在大电容旁以抑制高频阻抗的上升
●退耦电容,用在退耦电路中的电容器称为退耦电容,并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。
●高频消振电容:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。
●谐振电容:用在LC谐振电路中的电容器称为谐振电容,连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。LC并联和串联谐振电路中都需这种电容电路。衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
●旁路电容:用在旁路电路中的电容器称为旁路电容,电路中如果需要从信号中去掉某一频段的信号,可以使用旁路电容电路,根据所去掉信号频率不同,有全频域(所有交流信号)旁路电容电路和高频旁路电容电路。在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
●中和电容:用在中和电路中的电容器称为中和电容。并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。
●定时电容:用在定时电路中的电容器称为定时电容。在需要通过电容充电、放电进行时间控制的电路中使用定时电容电路,电容起控制时间常数大小的作用。
●积分电容:用在积分电路中的电容器称为积分电容。在电势场扫描的同步分离
电路中,采用这种积分电容电路,可以从场复合同步信号中取出场同步信号。
●微分电容:用在微分电路中的电容器称为微分电容。在触发器电路中为了得到尖顶触发信号,采用这种微分电容电路,以从各类(主要是矩形脉冲)信号中得到尖顶脉冲触发信号。
●补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。用在补偿电路中的电容器称为补偿电容,在卡座的低音补偿电路中,使用这种低频补偿电容电路,以提升放音信号中的低频信号,此外,还有高频补偿电容电路。
●自举电容:用在自举电路中的电容器称为自举电容,常用的OTL功率放大器输出级电路采用这种自举电容电路,以通过正反馈的方式少量提升信号的正半周幅度。
●分频电容:在分频电路中的电容器称为分频电容,在音箱的扬声器分频电路中,使用分频电容电路,以使高频扬声器工作在高频段,中频扬声器工作在中频段,低频扬声器工作在低频段。
●负载电容:是指与石英晶体谐振器一起决定负载谐振频率的有效外界电容。负载电容常用的标准值有16pF、20pF、30pF、50pF和100pF。负载电容可以根据具体情况作适当的调整,通过调整一般可以将谐振器的工作频率调到标称值。
滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lμF的电容,以滤除高频及脉冲干扰。
耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。
电容的重要性汹涌的河水流入到湖泊中,再让它流出来,那就显得平静而柔和了.电容就应该是充当了湖泊的作用吧.让电流更纯净没有杂波.
所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。在计算机系统的主板、插卡、电源的电路中,应用了电解电容、纸介电容和瓷介电容等几类电容,并以电解电容为主。
纸介电容是由两层正负锡箔电极和一层夹在锡箔中间的绝缘蜡纸组成,并拆叠成扁体长方形。额定电压一般在63V~250V之间,容量较小,基本上是pF(皮法)数量级。现代纸介电容由于采用了硬塑外壳和树脂密封包装,不易老化,又因为它们基本工作在低压区,且耐压值相对较高,所以损坏的可能性较小。万一遭到电损坏,一般症状为电容外表发热。
瓷介电容是在一块瓷片的两边涂上金属电极而成,普遍为扁圆形。其电容量较小,都在pμF(皮微法)数量级。又因为绝缘介质是较厚瓷片,所以额定电压一般在1~3kV左右,很难会被电损坏,一般只会出现机械破损。在计算机系统中应用极少,每个电路板中分别只有2~4枚左右。
电解电容的结构与纸介电容相似,不同的是作为电极的两种金属箔不同(所以在电解电容上有正负极之分,且一般只标明负极),两电极金属箔与纸介质卷成圆柱形后,装在盛有电解液的圆形铝桶中封闭起来。因此,如若电容器漏电,就容易引起电解液发热,从而出现外壳鼓起或爆裂现象。
反馈电容 跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
降压限流电容:串联在交流回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。25、软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26、启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压,在电动机正常运转后与副绕组断开。
27、运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
范文二:1. 电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。
2.电容既不产生也不消耗能量,是储能元件。
3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。
4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡.
5.在接地线上,为什么有的也要通过电容后再接地咧?
答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用.
6.电容补尝功率因数是怎么回事?
答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。
很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。下文介绍电容器的主要参数及应用,可供读者选择电容器种类时用。
1、标称电容量(CR):电容器产品标出的电容量值。
云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0005μF10μF);通常电解电容器的容量较大。这是一个粗略的分类法。
2、类别温度范围:电容器设计所确定的能连续工作的环境温度范围,该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。
3、额定电压(UR):在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。
电容器应用在高压场合时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值。
4、损耗角正切(tgδ):在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率。
这里需要解释一下,在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如下图所示。图中C为电容器的实际电容量,Rs是电容器的串联等效电阻,Rp是介质的绝缘电阻,Ro是介质的吸收等效电阻。对于电子设备来说,要求Rs愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角δ要小。
这个关系用下式来表达: tgδ=Rs/Xc=2πf×c×Rs 因此,在应用当中应注意选择这个参数,避免自身发热过大,以减少设备的失效性。
5、电容器的温度特性:通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示。
1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中
间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。
电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。
2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(μF)/mju:/、纳法(nF)、皮法(pF)。其中:1法拉=1000毫法(mF),1毫法=1000微法(μF),1微法=1000纳法(nF),1纳法=1000皮法(pF)
容量大的电容其容量值在电容上直接标明,如10 μF/16V
容量小的电容其容量值在电容上用字母表示或数字表示
字母表示法:1m=1000 μF 1P2=1.2PF 1n=1000PF
数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×102PF=1000PF 224表示22×104PF=0.22 μF
3、电容容量误差表
符 号 F G J K L M
允许误差 ±1% ±2% ±5% ±10% ±15% ±20%
如:一瓷片电容为104J表示容量为0. 1 μF、误差为±5%。
6使用寿命:电容器的使用寿命随温度的增加而减小。主要原因是温度加速化学反应而使介质随时间退化。
7绝缘电阻:由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低。
电容器包括固定电容器和可变电容器两大类,其中固定电容器又可根据所使用的介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、电解电容器和玻璃釉电容器等;可变电容器也可以是玻璃、空气或陶瓷介质结构。
回答者:liujun427 - 一代宗师 十五级 5-9 12:57
通交流阻直流
回答者:rx_78gp02a - 试用期 一级 5-9 12:58
二楼的ctrl+c用的不错!随便找篇文章搞上真是不负责任!
其实电容的作用无非就是偶合 滤波 保护 旁路 震荡这几种作用!说是这么说,要是细分起没个几天几夜是说不完的,
要知道详细一点建议你还是找本书看看吧!
这上面述说不清楚的!
回答者:zhang66612 - 经理 四级 5-9 14:44
滤波 保护 振荡
汹涌的河水流入到湖泊中,再让它流出来,那就显得平静而柔和了.电容就应该是充当了湖泊的作用吧.让电流更纯净没有杂波.
所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,
当然还有整流、振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和
夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。在计算机系统
的主板、插卡、电源的电路中,应用了电解电容、纸介电容和瓷介电容等几类电容,并以
电解电容为主。
纸介电容是由两层正负锡箔电极和一层夹在锡箔中间的绝缘蜡纸组成,并拆叠成扁体
长方形。额定电压一般在63V~250V之间,容量较小,基本上是pF(皮法)数量级。现代纸
介电容由于采用了硬塑外壳和树脂密封包装,不易老化,又因为它们基本工作在低压区,
且耐压值相对较高,所以损坏的可能性较小。万一遭到电损坏,一般症状为电容外表发
瓷介电容是在一块瓷片的两边涂上金属电极而成,普遍为扁圆形。其电容量较小,都
在pμF(皮微法)数量级。又因为绝缘介质是较厚瓷片,所以额定电压一般在1~3kV左右,
很难会被电损坏,一般只会出现机械破损。在计算机系统中应用极少,每个电路板中分别
只有2~4枚左右。
电解电容的结构与纸介电容相似,不同的是作为电极的两种金属箔不同(所以在电解
电容上有正负极之分,且一般只标明负极),两电极金属箔与纸介质卷成圆柱形后,装在
盛有电解液的圆形铝桶中封闭起来。因此,如若电容器漏电,就容易引起电解液发热,从
而出现外壳鼓起或爆裂现象。电解电容都是圆柱形(图1),体积大而容量大,在电容器上
所标明的参数一般有电容量(单位:微法)、额定电压(单位:伏特),以及最高工作温度(单
位:℃)。其中,耐压值一般在几伏特~几百伏特之间,容量一般在几微法~几千微法之
间,最高工作温度一般为85℃~105℃。指明电解电容的最高工作温度,就是针对其电解
液受热后易膨胀这一特点的。所以,电解电容出现外壳鼓起或爆裂,并非只有漏电才出
现,工作环境温度过高同样也会出现。
作为无源元件之一的电容,其作用不外乎以下几种:
1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:
旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放 电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大 电流毛刺时的电压降。
去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上 升沿比较陡峭的时候,电流比较大,这样驱动的电流
就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对 于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防 途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动 电流的变化大小来确定。
旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。
从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率 高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电 容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000uF)滤低频,小电容(20pF)滤高频。
曾有网友将滤波电容 比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。 它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000uF之间的铝电解电容器(如EPCOS公司的 B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式, 对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。
2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:
举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元 件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
2)振荡/同步
包括RC、LC振荡器及晶体的负载电容都属于这一范畴。
3)时间常数
这就是常见的 R、C 串联构成的积分电路。当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性通过下面的公式描述:
i = (V/R)e-(t/CR)
范文三:电容在电路中各种作用的基本常识
A、电压源正负端接了一个电容(与电路并联),用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。
当用于电池电源时,具有交流通路的作用,这样就等于把电池的交流信号短路,避免了由于电池电压下降,电池内阻变大,电路产生寄生震荡。
比如说什么样的电路中 串或者并个电容可以达到耦合的
作用,不放电容和放电容有什么区别?
在交流多级放大电路中,因各级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!
基本放大电路中的两个耦合电容,电容+极和直流+极相
接,起到通交隔直的作用,接反的话会怎么样,会不会也起到通交隔直的作用,为什么要那接呀!
接反的话电解电容会漏电,改变了电路的直流工作点,使放大
电路异常或不能工作
D、阻容耦合放大电路中,电容的作用是什么??
隔离直流信号,使得相邻放大电路的静态工作点相互独立,互不影响。
E、模拟电路放大器不用耦合电容行么,照样可以放大啊?
书上放大器在变压器副线圈和三极管之间加个耦合电容,解释是通交流阻直流,将前一级输出变成下一级输入,使前后级不影响,前一级是交流电,后一级也是交流电,怎么会相互影响啊,我实在想不通加个电容不是多此一举啊
你犯了个错误。前一级确实是交流电,但后一级是交流叠加直流。三极管是需要直流偏置的。如果没有电容隔直,则变压器的线圈会把三极管的直流偏置给旁路掉(因为电感是通直流的)
在基本放大电路中,耦合电容要视频率而定,当频率较高时,需用无极电容,特点是比较稳定,耐压可以做得比较高,体积相对小,但容量做不大。其最大的用途是可以通过交流电,隔断直流电,广泛用于高频交流通路、旁路、谐振等电路。(简单理解为高频通路)
当频率较低时,无极电容因为容量较低,容抗相对增大,就要用有极性的电解电容了,由于其内部加有电解液,可以把容量做得很大,让低频交流电通过,隔断直流电。但由于内部两极中间是有机介质的,所以耐压受限,多用于低频交流通路、滤波、退耦、旁路等电F、基本放大电路耦合电容,其中耦合电容可以用无极性的
路。(简单理解为低频通路)
G、请电路高手告知耦合电容起什么作用
在放大电路中,利用耦合电容通交隔直的作用,使高频交流信号可以顺利通过电路,被一级一级地放大,而直流量被阻断在每一级的内部.
H、请问用电池供电的电路中,电容为什么会充放电,起到延时的作用?
电容是聚集电荷的,你可把它想象成个水杯,充放电就是充放水。在充电过程中,电压是慢慢的上升的,放电反之。你只需检测电容两端电压就能实现延时。如充电,开始时,电容两端电压为零,随着充电时间延长,电压逐渐上升到你设定的电压就能控制电路的开关。当然,也可反过来利用放电。延时时间与电容容量、电容漏电,充电电阻,及电压有关,有时还要把负载电阻考虑进去。
I、阻容耦合,是利用电容的通交隔直特性,防止前、后级之间的直流成分引起串扰,造成工作点的不稳定。
J、阻容耦合放大电路只能放大交流信号,不能放大直流信号,对还是错?
对.电容是一种隔直流阻交流的电子元件.所以阻容耦合放大电路只能放大交流信号.放大直流信号用直接耦合放大电路.
K、放大电路中耦合电容和旁路电容如何判别?
耦合电容负极不接地,而是接下一级的输入端,旁路电容负极接地。
L、运放的多级交流放大电路如何选用电容耦合?
其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。
放大电路采用直接耦合,反馈网络为纯电阻网络,为什
么电路只可能产生高频振荡?
振荡来源于闭环的相移达到180度并且此时的环路增益是大于零的。采用纯电阻网络作为反馈网络是一定不会引入相移的,所以呢全部的相移是来自于放大器的开环电路。采用直接耦合的开环放大器在级之间是不会有电容元件引起相移的,那么能够引起相移的便是晶体管或MOS管内部的电容,这些电容都是fF,最大pF级的电容,这些电容与电路等效电阻构成的电路的谐振频率是相当高的。所以放大器采用直接耦合,反馈网络为纯阻网络只可能产生高频振荡。
N、阻容耦合放大电路的频带宽度是指(上限截至频率与下限截至频率之差)阻容耦合放大电路的上限截止频率是指(随着频率升高使放大倍数下降到原来的0.707倍,即-3dB时的频率)阻容耦合放大电路的下限截止频率是指(随着频率降低使放大倍数下降到原来的0.707倍,即-3dB时的频率)。阻容耦合放大电路的上限截止频率主要受(晶体管结电容,电路的分布电容)的影响,阻容耦合放大电路的下限截止频率主要受(隔直电容与旁路)电容的影响
O、运放的多级交流放大电路如何选用电容耦合?
其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽
电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。
P、在多级放大电路里面电解电容是怎么耦合到下一级的呢
在电容里面的特性不是隔直的吗,它是怎么传送过去的呢。还有为电容要通过三极管的集电极来接呢,发射机为什么不可以呢?电解电容都是在交流放大器里面工作,而交流的电流方向呈周期性变化,三极管能正常导通吗?
还有NPN型的三极管的集电极不是从C到B的吗,那它的电流是怎么通过流到下一级的三极管的基极的呢
用电解电容做耦合的放大器,都是交流放大器。电解电容在这里作“通交隔直”用。由三极管的哪个极输出,是电路形式的问题,两者都有。
Q、1.怎样估算第一级放大器的输出电阻和第二级放大器的输入电阻,2当信号源的幅度过大,在两级放大器的输出端分别会出现什么情况 ?3.用手在放大器的输入端晃动,观察放大器的输出端,看是否出现了什么?原因是什么?
1.第二级放大器的输入电阻就是第一级放大器的输出电阻。2 失真。3 杂波,人体感应。
R、电容可以起到耦合作用?比如说什么样的电路中 串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别?
在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工
作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!
S、怎么利用电容的充放电,理解滤波,去耦,旁路..... 电容就是充放电。那怎么利用电容的充放电,去理解滤波,去耦,旁路.....
答:电容隔直流通交流,隔直流好理解,通交流不好理解,只要理解了通交流就理解了滤波、去耦和旁路。
电容就是充放电,不错。但交流电的方向,正反向交替变化。振幅的大小也做周期性变化。整个变化的图像就是一条正弦曲线。
电容器接在交流电路中,由于交流电压的周期性变化,它也在周期性的充放电变化。线路中存在充放电电流,这种充放电电流,除相位比电压超前90度外,形状完全和电压一样,这就相当于交流通过了电容器。
和交流电通过电阻是不同,交流电通过电阻,要在电阻上消耗电能(发热)。而通过电容器只是与电源做能量交换,充电时电源将能量送给电容器,放电时电容器又将电能返还给电源,所以这里的电压乘电流所产生的功率叫无功功率。
需要明确的是,电容器接在交流电路中,流动的电子(电流)并没有真正的冲过绝缘层,却在电路中产生了电流。这是因为在线路中,反向放电和正向充电是同一个方向,而正向放电和反向充电是同一个方向,就象接力赛跑,一个团队跑完交流电的正半周,另一个团队接过接力棒继续跑完交流电的负半周。
理解了电容器通交流,那么,交流成份旁路到地,完成滤波也就
可以理解了。
旁路电容和滤波电容,去耦电容分别怎么用?,可以举一
些实例说明?
答:这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。
滤波电容,这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。
旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。
去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
U、什么是耦合电容,去耦电容,有什么特点和作用?
耦合电容是传递交流信号的,接在线路中。去耦电容是将无用交流信号去除的,一段接在线路中、一端接地。
V、关于电容有几作用,在什么情况才电容耦合,在什么情况才电容滤波?
答:电容器在电路里的十八般武艺归根到底就是两个!充电荷!放电荷!
其特性就是通交流!隔直流!电容两端加上交变电压后会随电流交变频率而不断的充放电!此时电路里就有同频率的交变电流通过!
这就是电容的通交特性!
在频率合适的情况下电容对电路可视为通路!前级交流输出经电容就可传至后级电路!
而对直流来说它却是隔绝的! 因为两端电压充至与电路电压相等时就不会再有充电电流了!
作用于前后级交流信号的传递时就是藕合!
作用于滤除波动成份及无用交流成分时就是滤波!
W、大家都知道,整流电路的电容滤波是利用其充放电;但是有时候滤波是利用电容对不通频率信号的容抗不同,比如旁路电容。所以分析电容滤波时到底用哪个角度分析啊?
其实不论是哪种说法都是一个道理,利用充放电的理论较笼统一些,利用容抗的的理论则更深入一些,电容的作用就是利用了其充放电的特性,看你想滤除什么成份,滤低频用大电容,滤高频用小电容,在理论上低频整流电路中的滤波和高频中的旁路是相同的都是利用了容抗的不同。
电容如何实现充放电、整流、滤波的功能
电容的充电,放电,整流和滤波甚至包括它的移相,电抗等功能,都是电容的存储功能在起作用。电容之所以能够存储电荷,是利用了正负电荷之间有较强的互相吸引的特性来实现的。在给电容充电时,人们通过电源将正电荷引入正极板,负电荷引入到电容的负极板。但是正负电荷又到不了一起这是因为有一层绝缘模阻隔着它们。隔模越大越薄引力也就越大。存储的电荷也就越多。正负电荷在十个极板间
是吸引住了但是如果你给它提供一个外电路它们就会能过这个外电路互相结合,也就是放电。它们毕竟是一高一低麻。形像来说电容就像一个储水池。它可以形像地说明它的整流波波的作用。
Y、滤波电容 充电 满了之后然后对后面回路放电然后在充放循环?稳压二极管是击穿稳压还是不击穿稳压?
其实你说的很对,它在电路中就是这么一个工作的过程,但是他跟信号的频率有关系,首先看你要把电容放在电路中用着什么,当用作滤波时,它把一定频率信号滤除到地,如芯片电源前端的电容,有的则是去耦,你说的现象就像稳压关前的滤波电容和开关电源输出的滤波电容,关于稳压管我给你举个例子吧,假如有个5V的稳压管,当电压小与5V,电压就等与它本身的电压,当电压高于5V,稳压管就把电压稳到5V,多余的电压把稳压关击穿通道第上去了
Z、电容的耦合是什么具体意思啊?它和滤波有什么区别吗?
耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指 耦合电容值与第二级输入阻抗值乘积对应的时间常数。
退耦有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断;2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;3.形成悬浮地或是悬浮电源,在复杂的系
统中完成各部分地线或是电源的协调匹。
有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
范文四:电容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。
1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。
2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9、稳频电容:在振荡电路中,起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。
13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
16、预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17、去加重电容:为了恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置RC在网络中的电容。
18、移相电容:用于改变交流信号相位的电容。
19、反馈电容:跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20、降压限流电容:串联在交流回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21、逆程电容:用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500伏以上。
22、S校正电容:串接在偏转线圈回路中,用于校正显象管边缘的延伸线性失真。
23、自举升压电容:利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。
24、消亮点电容:设置在视放电路中,用于关机时消除显象管上残余亮点的电容。
25、软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26、启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压,在电动机正常运转后与副绕组断开。
27、运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
范文五:电容在电路中的作用
在直流电路中,电容器是相当于断路的。电容器是一种能够储藏电荷的元件,也是最常用的电子元件之一。 这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。
但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。 在中学阶段,有句话,就叫通交流,阻直流,说的就是电容的这个性质。
电路中电容的作用作为无源元件之一的电容,其作用不外乎以下几种:
1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:
旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放 电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大 电流毛刺时的电压降。
去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上 升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对 于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防 途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF
或者更大,依据电路中分布参数,以及驱动 电流的变化大小来确定。 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。
从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率 高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电 容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000uF)滤低频,小电容(20pF)滤高频。
曾有网友将滤波电容 比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。 它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000uF之间的铝电解电容器(如EPCOS公司的 B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式, 对于功率级超过10KW的电源,通常采用体积
较大的罐形螺旋端子电容器。 基本功能——充电和放电
充电和放电是电容器的基本功能。
使电容器带电(储存电荷和电能)的过程称为充电。这时电容器的两个极板总是一个极板带正电,另一个极板带等量的负电。把电容器的一个极板接电源(如电池组)的正极,另一个极板接电源的负极,两个极板就分别带上了等量的异种电荷。充电后电容器的两极板之间就有了电场,充电过程把从电源获得的电能储存在电容器中。
使充电后的电容器失去电荷(释放电荷和电能)的过程称为放电。例如,用一根导线把电容器的两极接通,两极上的电荷互相中和,电容器就会放出电荷和电能。放电后电容器的两极板之间的电场消失,电能转化为其它形式的能。
在一般的电子电路中,常用电容器来实现旁路、耦合、滤波、振荡、相移以及波形变换等,这些作用都是其充电和放电功能的演变。
2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:
举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同
时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元 件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
2)振荡/同步
包括RC、LC振荡器及晶体的负载电容都属于这一范畴。
3)时间常数
这就是常见的 R、C 串联构成的积分电路。当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性通过下面的公式描述:
i = (V/R)e-(t/CR)
电容器在不同电路中的名称和作用
电容器是一种储能元件,具有“隔直通交,阻低频通高频”的特性,人们为了认识和鉴别不同电路中的电容器,根据其在线路中的作用而给它起了许多名称。下面介绍一些常用名称的含义。
1.滤波电容:它接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑。一般常采用大容量的电解电容器,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。
2.退耦电容:并接于放大电路的电源正、负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3.旁路电容:在交、直流信号的电路中,将电容并接在电阻两端或
由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4.耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5.调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6.衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。适当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。
7.补偿电容:它是与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8.中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9.稳频电容:在振荡电路中,起稳定振荡频率的作用。
10.定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11.加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12.缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。
13.克拉泼电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14.锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15.稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
16.预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17.去加重电容:为恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置在RC网络中的电容。
18.移相电容:用于改变交流信号相位的电容。
19.反馈电容:跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20.降压限流电容:串联在交流电回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21.逆程电容:用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500V以上。
22.校正电容:串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。
23.自举升压电容:利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的倍。
24.消亮点电容:设置在视放电路中,用于关机时消除显像管上残余
亮点的电容。
25.软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26.启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压。在电动机正常运转后与副绕组断开。
27.运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。 电容的用途非常多,主要有如下几种:
1.隔直流:作用是阻止直流通过而让交流通过。
2.旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路
4.滤波:这个对DIY而言很重要显卡上的电容基本都是这个作用。
5.温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6.计时:电容器与电阻器配合使用,确定电路的时间常数。
7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
8.整流:在预定的时间开或者关半闭导体开关元件。
9.储能:储存电能,用于必须要的时候释放。例如相机闪光灯,
加热设备等等。(如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
当极性接反并施加2倍额定电压和20A电流时不同阴极钽电容的反映:使用二氧化锰为阴极的钽二氧化锰电容全部爆炸,而使用PPY为阴极的钽固体聚合物电容虽然全部报废,但表面无损。这反映了二氧化锰阴极电容和聚合物电容在安全性上的差异。
范文六:从名称认识电容在电路中的作用0
电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。
1.滤波电容
它接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑。一般常采用大容量的电解电容器,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。
2.退耦电容
并接于放大电路的电源正、负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3.旁路电容
在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4.耦合电容
在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5.调谐电容
连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6.衬垫电容
与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。适当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。
7.补偿电容 它是与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8.中和电容
并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9.稳频电容
在振荡电路中,起稳定振荡频率的作用。
10.定时电容
在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11.加速电容
接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12.缩短电容
在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。
13.克拉泼电容
在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14.锡拉电容
在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15.稳幅电容
在鉴频器中,用于稳定输出信号的幅度。
16.预加重电容
为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17.去加重电容
为恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置在RC网络中的电容。
18.移相电容
用于改变交流信号相位的电容。
19.反馈电容
跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20.降压限流电容
串联在交流电回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21.逆程电容
用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500V以上。
22.校正电容
串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。
23.自举升压电容
利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。
24.消亮点电容
设置在视放电路中,用于关机时消除显像管上残余亮点的电容。
25.软启动电容
一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26.启动电容
串接在单相电动机的副绕组上,为电动机提供启动移相交流电压。在电动机正常运转后与副绕组断开。
27.运转电容
与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
单片机晶振的两个电容的作用
这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。
晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容)经验值为3至5pf。
各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器。晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联。在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十M 欧之
间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了。这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是
数 PF 到数十 PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量.
晶振起振后的频率准确与否,和选取的C1,C2是否与晶振规格要求的负载电容要求相吻合有直接关系,计算公式如下:CL=C1*C2/(C1+C2)+5pF;算出的CL值要与晶振规格要求的负载电容尽量接近才能获得晶振的标称频率的振荡频率.
一般电容的计算公式是:
两边电容为Cg,Cd,负载电容为Cl,则
cl=cg*cd/(cg+cd)+a
就是说负载电容15pf的话,两边个接27pf的差不多了,一般a为6.5~13.5pF 晶振的作用:单片机工作时,就必须要一个时钟信号,也是说它能分出一个时间单位能做多少事情(就像出操时的口令)才能步调一致,要过到这个条件,就必须要有一个人来吹这个口哨,所以我们就给他一个发指令的
范文七:电容在电路中的作用
电容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。
1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。
2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9、稳频电容:在振荡电路中,起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。
13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
16、预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17、去加重电容:为了恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置RC在网络中的电容。
18、移相电容:用于改变交流信号相位的电容。
19、反馈电容:跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20、降压限流电容:串联在交流回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21、逆程电容:用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500伏以上。
22、S校正电容:串接在偏转线圈回路中,用于校正显象管边缘的延伸线性失真。
23、自举升压电容:利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。
24、消亮点电容:设置在视放电路中,用于关机时消除显象管上残余亮点的电容。
25、软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26、启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压,在电动机正常运转后与副绕组断开。
27、运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
-摘自华巨电子
范文八:电容在电路中作用
电容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。
1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。
2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9、稳频电容:在振荡电路中,起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。
13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
16、预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17、去加重电容:为了恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置RC在网络中的电容。
18、移相电容:用于改变交流信号相位的电容。
19、反馈电容:跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20、降压限流电容:串联在交流回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21、逆程电容:用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500伏以上。
22、S校正电容:串接在偏转线圈回路中,用于校正显象管边缘的延伸线性失真。
23、自举升压电容:利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。
24、消亮点电容:设置在视放电路中,用于关机时消除显象管上残余亮点的电容。
25、软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26、启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压,在电动机正常运转后与副绕组断开。
27、运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
电解电容在电路中的作用
1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰.
2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。
二、电解电容的判断方法
电解电容常见的故障有,容量减少,容量消失、击穿短路及漏电,其中容量变化是因电解电容在使用或放置过程中其内部的电解液逐渐干涸引起,而击穿与漏电一般为所加的电压过高或本身质量不佳引起。判断电源电容的好坏一般采用万用表的电阻档进行测量.具体方法为:将电容两管脚短路进行放电,用万用表的黑表笔接电解电容的正极。红表笔接负极(对指针式万用表,用数字式万用表测量时表笔互调),正常时表针应先向电阻小的方向摆动,然后逐渐返回直至无穷大处。表针的摆动幅度越大或返回的速度越慢,说明电容的容量越大,反之则说明电容的容量越小.如表针指在中间某处不再变化,说明此电容漏电,如电阻指示值很小或为零,则表明此电容已击穿短路.因万用表使用的电池电压一般很低,所以在测量低耐压的电容时比较准确,而当电容的耐压较高时,打时尽管测量正常,但加上高压时则有可能发生漏电或击穿现象.
三、电解电容的使用注意事项
1、电解电容由于有正负极性,因此在电路中使用时不能颠倒联接。在电源电路中,输出正电压时电解电容的正极接电源输出端,负极接地,输出负电压时则负极接输出端,正极接地.当电源电路中的滤波电容极性接反时,因电容的滤波作用大大降低,一方面引起电源输出电压波动,另一方面又因反向通电使此时相当于一个电阻的电解电容发热.当反向电压超过某值时,电容的反向漏电电阻将变得很小,这样通电工作不久,即可使电容因过热而炸裂损坏.
2.加在电解电容两端的电压不能超过其允许工作电压,在设计实际电路时应根据具体情况留有一定的余量,在设计稳压电源的滤波电容时,如果交流电源电压为220~时变压器次级的整流电压可达22V,此时选择耐压为25V的电解电容一般可以满足要求.但是,假如交流电源电压波动很大且有可能上升到250V以上时,最好选择耐压30V以上的电解电容。
3,电解电容在电路中不应靠近大功率发热元件,以防因受热而使电解液加速干涸.
4、对于有正负极性的信号的滤波,可采取两个电解电容同极性串联的方法,当作一个无极性的电容。
5.电容器外壳、辅助引出端子与正、负极 以及电路板间必须完全隔离。
贴片电容和其它贴片电子元器件一样,按封装类型(也就是体积的大小)可分为×0.5)、 ×0.8)、×1.2)、 ×1.6)、 ×2.5)、 ×3.2)等。
除了封装类型外,常见的贴片电容还必须包括材质、容量、电压和精度等。
以下以风华系列的贴片电容的型号为例:
例:0805 CG 102 J 500 N T
0805:是指该贴片电容的尺寸套小,是用英寸来表示的。08表示长度是0.08英寸、05表示宽度为0.05英寸;
CG:是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容;
102:是指电容容量,前面两位是有效数字、后面的2表示有多少个零102=10×102,也就是=1000PF; J:是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的;
500:是要求电容承受的耐压为50V。同样500前面两位是有效数字,后面是指有多少个零; N:是指端头材料。现在一般的端头都是指三层电极(银/铜层)、镍、锡;
T:是指包装方式。T表示编带包装,B表示塑料盒散包装;
范文九:电容器在电路中的作用
电容器是收音机中最常用的元件之一。这里简单介绍电容器的基本性能和它们在电路中的作用。
电容器能够贮存电荷
我们经常用万用表检验大容量的电容器(例如几个微法以上的电解电容器)。把万用表拨到R×IK档, 用两只表笔接到电容器的两端(如果是电解电容器,应注意把黑表笔接电容器正端),这时表针突然有很大偏转。然后慢慢往回走,最后差不多回到原来的位置。这就说明这只电容器是完好的。
这个现象可用图1的简化电路来说用。万用表的电阻挡相当于电池E和电阻R、电流表M相串联。当表笔接到电容器C两端时,电容器极板A上的电子就被电源正极吸引过去,而电源负极把同样数量的电子送到电容器极板B上。或者说电容器极板A上聚集起正电荷,极板B上聚集了相同数量的负电荷。我们把这种现象叫做电容器的“充电”。充电时候,由于电子运动,在导线里就有电流,因此,万用表的指针偏转。
正负电荷聚集在两个极板上。就在两极板间形成了电压。随着电容器两端电荷不断增加,这个电压由小逐渐增大,因而充电电流就逐渐减小。当这个电压V等于电源电压E时,充电就停止,导线中就没有电流。因此万用表指针就回到最左端。由于电容器两个极板之间是用绝缘材料隔开,虽然电容器两端有电压,但是电荷不能从极板间通过。所以电容器有隔断直流电的作用。
就这样,电容器两个极板上各集聚了电量+Q和-Q,而两端间的电压V等于电池电压E。如果把表笔离开电容器,电容器的极板上就贮存了电量Q。这一点可以通过实验来证明。如图2所示,利用万用表测电流的微安档,把红表笔接电容器A端(在表笔前面串一个15K 左右的电阻R),把黑表笔接B端,这时表针一下子偏转到最大,然后逐渐回到零。这说明用导线把已经充了电的电容器两极板短接起来后,B端极板上的电子会很快从导线里跑到A端。由于电子的运动,导线里就有电流。最后,电容器两个极板上不再带电,电压也就消失。这种现象叫做“放电”。
通过以上实验,我们看到电容器的确能够贮存电荷。这是它最基本的特性。电容器的电容量C,就是说明它贮存电荷的本领的。电容器所贮存的电量Q正比于电容量C与电容器两端间的电压V的乘积,即
Q(库仑)=C(法拉)V(伏特).(1)
这就是说,在相同的端电压下,不同的电容器所贮存的电量也不同。电容器的容量C越大,它所贮存的电量就越大。另一方面,对于同一个电容器。它两端的电压越大,贮存的电量就越大。
交流电是怎样“通过”电容器的?
前面说过,电容器是不能通过直流电流的。两极板间有很好的绝缘材料,电荷很难通过它跑到对面的极板上去。当把直流电压加到电容器上的一瞬间,电路中产生了充电电流。以后电路中就没有电流了。
对于交流电,情况就有些不同。设在电容器上加一个交流电源,如图3所示。交流电源的方向和大小是在不断变化着。当电源电压上端为正并且继续增长时,就向电容器上端充正电荷,电流方向如图中实线箭头所示。随后电源电压开始减小,电容器就通过电源放电,电流方向如图中虚线所示。以后电源电压改变方向,下正上负,开始向电容器下极板充正电荷,这个反向充电电流的方向和刚才的放电电流方向一样,也如图中虚线所示。反向电压增到一定大小后,开始减小,电容器又开始反向放电(实线箭头)。这个过程反复进行。虽然电容器两极板间仍然没有电荷通过,但是电路中却形成了方向和大小都随时间而变化的交流电流,就好象电容器能通过交流电一样。
电容器的电抗
现在进一步看看,图3电路中所产生的交流电流的大小和什么有关。
在电源电压的幅度E不变的情况下,电容器在电压达到最大值E时贮存的电量最多,此时Q=CE。如果电源频率f不变,那么,C越大,Q就越大,充放电的电流就越大,或者说电路中的交流电流越大。如果电容量C不变,即Q不变,那么,频率f越高,电容器充放电一次的时间就越短,也就是说电容器从零充电到Q或从Q放电到零所用的时间越短,电荷的移动加快,所以电路中的交流电流增大。这就说明了容量C及频率f不同时,电容器对交流电流有不同的抵抗作用。电容器对交流电流的抵抗作用就叫做电抗,用XC表示。XC的计算公式如下:
式中XC的单位是欧,f的单位是赫,C的单位是法拉,π=3.1416。这个公式说明,电容量越大,频率越高,电容器的电抗就越小,交流电流就越容易通过它。
如果加在电容器两端的电压幅度为E,电容器的电抗为XC,那么,“通过”电容器的交流电流的幅度
它和直流电流通过电阻时的欧姆定律相似。这就是欧姆定律应用于交流电路的情况。
电容器在电路中的作用
把前面所谈的总结一下就是:电容器不能通过直流电,但是能“通过”交流电。电容器的容量越大,电流的频率越高,它的容抗就越小,交流电流就越容易“通过”。电容器的这一基本特性,在无线电电路中得到了广泛的应用。
我们以图4的两管收音机为例来说明图中各个电容器的作用。
先看一下电容器C5。它有两个作用。第一是隔断A、B两点间的直流通路。从这个观点来看可以把它叫做隔直流电容器。我们实际测量一下,就知道A点对地的直流电压是-3伏到-5伏,而B点只有负零点几伏。如果把A、B两点直接连起来,就破坏了BG1和BG2两个晶体管的静止工作状态,使收音机不能正常工作。C5的另一个作用是能通过交流音频信号,把BG1集电极的输出信号耦合到BG2的基极去进一步放大。从这个观点来看,可以把C5叫做耦合电容器。这个电容器对音频信号的容抗应当较小。例如,10微法的电容器对400赫音频电流的容抗,根据式(2)可以算出约为40欧。如果我们把C5改用成0.02微法的电容器,可根据式(2)算出它对400赫信号的容抗为20千欧,信号很难通过,因而收音机的音量显着减小。
再看一下C2。设它的容量为0.02微法。它对1000千赫的电台高频信号的电抗约为8欧,所以线圈L2中的高频信号能顺利地加到三极管BG1的发射结上以进行放大。另一方面,这个电容器还能把检波后残余的高频成分旁路掉。前一段曾经算出,0.02微法的电容对400赫的容抗约为20千欧,这个数值相当大,所以音频信号不致被旁路。如果C2取得太大,对音频信号容抗太小,那么检波后得到的音频信号也会被它旁路掉,加到发射结上的音频电压很小,得不到足够的放大。如果不要C2,直接把L2下端接到BG1的发射极,那么音频信号和直流偏压都被短路而加不到发射结上,收音机就不能正常工作。
CZ是一个半可变微调电容器。放大了的高频信号通过L3、CZ构成回路,回授(反馈)到输入调谐回路,使高频信号得到加强。如果把CZ的容量调大些,它的容抗减小,就能增加高频信号的回授量,使再生加强。在CZ调好,容量固定以后,由于容抗与频率成反比,所以在收听中波波段的高频端(例如1480千赫)的电台时,CZ的容抗较小,再生较强,灵敏度和选择性较好;而在收听低频端(例如640千赫)的电台时,CZ的容抗较大,再生较弱,灵敏度和选择性较差。
C3的容量为100微微法,它对高频信号容抗较小(对1000千赫高频信号的容抗约为
1.6千欧),所以高频信号不通过高频扼流圈L4送到下一级,而是通过C3加到检波器上进行检波。另一方面,C3对音频信号的容抗较大(对400赫音频信号的容抗约为4兆欧),所以被放大的音频信号不通过C3,而是通过L4加到下一级晶体管的基极去。此外,对检波电路而言, C3还起着隔直流的作用,防止电池负极经过R3、L4直接通到D2,这样才能保证检波器的正常工作。
C4(0.02微法)对1000千赫高频的容抗为8Ω,可以把从L4漏过来的高频信号进一步旁路掉;它对400赫音频信号的容抗约为20千欧,所以对音频信号没有显着的旁路作用。
并联在电池上的电容器C6的容量很大(50微法),对低频信号的电抗较小。在电池用旧内阻增大时,C6并在电池内阻上,对低频信号起旁路作用,以防止各放大级通过电池内阻的耦合产生有害的低频振荡。
最后简单提一下C1的作用。它和天线线圈L1组成了调谐回路。改变C1的容量,就可以改变调谐回路的谐振频率,使它只对某一频率的电磁波发生谐振,达到选择信号的目的。(王昌辉)
范文十:电路中电容的作用
从名称认识电容在电路中的作用
电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。
1.滤波电容 它接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑。一般常采用大容量的电解电容器,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。
2.退耦电容 并接于放大电路的电源正、负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3.旁路电容 在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4.耦台电容 在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5.调谐电容 连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6.衬垫电容 与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。适当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。
7.补偿电容 它是与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8.中和电容 并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9.稳频电容 在振荡电路中,起稳定振荡频率的作用。
10.定时电容 在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11.加速电容 接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12.缩短电容 在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。
13.克拉泼电容 在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14.锡拉电容 在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15.稳幅电容 在鉴频器中,用于稳定输出信号的幅度。
16.预加重电容 为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17.去加重电容 为恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置在RC网络中的电容。
18.移相电容 用于改变交流信号相位的电容。
19.反馈电容 跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20.降压限流电容 串联在交流电回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21.逆程电容 用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500V以上。
22.校正电容 串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。
23.自举升压电容 利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。
24.消亮点电容 设置在视放电路中,用于关机时消除显像管上残余亮点的电容。
25.软启动电容 一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26.启动电容 串接在单相电动机的副绕组上,为电动机提供启动移相交流电压。在电动机正常运转后与副绕组断开。
27.运转电容 与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。 (林社雄)
电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。与电阻器相似,通常简称其为电容,用字母C表示。顾名思义,电容器就是“储存电荷的容器”。尽管电容器品种繁多,但它们的基本结构和原理是相同的。两片相距很近的金属中间被某物质(固体、气体或液体)所隔开,就构成了电容器。两片金属称为的极板,中间的物质叫做介质。电容器也分为容量固定的与容量可变的。但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。
不同的电容器储存电荷的能力也不相同。规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。电容的基本单位为法拉(F)。但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用微法(μF)、纳法(nF)、皮法(pF)(皮法又称微微法)等,它们的关系是:1法拉(F)=1000000微法(μF)1微法(μF)=1000纳法(nF)=1000000皮法(pF)
在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。
把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。
举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。
电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致的充电电流和放电电流。
电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为6.3V,10V,16V,25V,50V等。}

我要回帖

更多关于 滞后补偿和超前补偿 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信