象管要实现图像增强,一般机房采取的管控措施哪些措施

我的图书馆
&&&&& 图像处理技术(Image Processing ),就是用计算机对图像进行分析,以达到所需结果的技术。也可称影像处理。
&&&& &基本内容:图像处理一般指数字图像处理。数字图像是指用数字、等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。
&&&& &常见的图像处理有图像数字化、图像编码、图像复原、图像分割、图像增强、图像分析等。虽然某些处理也可以用光学方法或模拟技术实现,但它们远不及数字图像处理那样灵活和方便,因而数字图像处理成为图像处理的主要方面。
图像数字化
&&&&& 通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式。图像在计算机内部被表示为一个数字矩阵,矩阵中每一元素称为像素。图像数字化需要专门的设备,常见的有各种的和光学的扫描设备,还有机电扫描设备和手工操作的数字化仪。
&&&&&& 图像信息编码,是用来满足传输和存储的要求。图像信息编码能压缩图像的信息量,但图像质量几乎不变。因此,可以采用模拟处理技术,再通过模-数转换得到编码,不过多数是采用数字编码技术。编码方法:可以图像逐点进行加工的方法,也可以对图像施加某种变换或基于区域、特征进行编码的方法。常用的编码技术:脉码调制、微分脉码调制、预测码和各种变换。
图像复原 (Image restorati)
&&&&&& 图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。
&&&& &图像复原是图像处理的另一重要课题。它的主要目的是改善给定图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,由于成像系统传输介质和设备的不完善,使图像的质量变坏,这一过程称为图像的退化。图像的复原是要尽可能恢复退化图像的本来面目,它是沿图像降质的逆向过程进行的。
&&&& &典型的图像复原是根据图像退化的先验知识建立的一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,使图像质量得到改善。可见图像复原主要取决于对图像退化过程的先验知识所掌握的精确程度。
&&&&& 图像分割是将图像划分为一些互不重叠的区域,每一区域是像素的一个连续集。
&&&& &通常采用把像素分入特定区域的区域法和寻求区域之间边界的境界法。区域法根据被分割对象与背景的对比度进行阈值运算,将对象从背景中分割出来。有时用固定的阈值不能得到满意的分割,可根据局部的对比度调整阈值,这称为自适应阈值。境界法利用各种边缘检测技术,即根据图像边缘处具有很大的梯度值进行检测。这两种方法都可以利用图像的纹理特性实现图像分割。
&&&& &图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;  图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
  以提高图像质量为目的的图像增强对于一些难以得到的图片或者在拍摄条件十分恶劣情况下得到的图片都有广泛的应用。例如从太空中拍摄到的地球或其他星球的照片,用或X光拍摄的生物医疗图片等。&
&&&& 与图像复原不同,图像增强并不要求忠实地反映原始图像。相反,含有某种失真的图像可能比无失真的原始图像更为清晰。常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。 ③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰。
&&& 图像分析的内容和模式识别、人工智能的研究领域有交叉,但图像分析与典型的模式识别有所区别。图像分析不限于把图像中的特定区域按固定数目的类别加以分类,它主要是提供关于被分析图像的一种描述。所以,既要利用模式识别技术,又要利用关于图像内容的知识库,即人工智能中关于知识表达方面的内容。图像分析需要用图像分割方法抽取出图像的特征,然后对图像进行符号化的描述。这种描述不仅能对图像中是否存在某一特定对象作出回答,还能对图像内容作出详细描述。   图像处理的各个内容是互相有联系的。一个实用的图像处理系统往往结合应用几种图像处理技术才能得到所需要的结果。图像数字化是将一个图像变换为适合计算机处理的形式的第一步。图像编码技术可用以传输和存储图像。图像增强和复原可以是图像处理的最后目的,也可以是为进一步的处理作准备。通过图像分割得出的图像特征可以作为最后结果,也可以作为下一步图像分析的基础。   图像匹配、描述和识别 对图像进行比较和配准,通过分制提取图像的特征及相互关系,得到图像符号化的描述,再把它同模型比较,以确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似或不同的程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹。  从图像中抽取某些有用的度量、数据或信息称为图像分析。图像分析的基本步骤是把图像分割成一些互不重叠的区域,每一区域是像素的一个连续集,度量它们的性质和关系,最后把得到的图像关系结构和描述景物分类的模型进行比较,以确定其类型。识别或分类的基础是图像的相似度。一种简单的相似度可用区域特征空间中的距离来定义。另一种基于像素值的相似度量是图像函数的相关性。最后一种定义在关系结构上的相似度称为结构相似度。  以图片分析和理解为目的的分割、描述和识别将用于各种自动化的系统,如字符和图形识别、用机器人进行产品的装配和检验、自动军事目标识别和跟踪、指纹识别、X光照片和血样的自动处理等。在这类应用中,往往需综合应用模式识别和计算机视觉等技术,图像处理更多的是作为前置处理而出现的。  多媒体应用的掀起,对图像压缩技术的应用起了很大的推动作用。图像,包括录像带一类动态图像将转为数字图像,并和文字、声音、图形一起存储在计算机内,显示在计算机的屏幕上。它的应用将扩展到教育、培训和娱乐等新的领域。
常见图像处理软件
Adobe Illustrator
&&&&& 软件特点:专业矢量绘图,功能强大,界面友好。&&&&& 软件优势:无论您是生产印刷出版线稿的设计者和专业插画家、生产多媒体图像的艺术家、还是互联网页或在线内容的制作者,都会发现Illustrator 不仅仅是一个艺术产品工具,能适合大部分小型设计到大型的复杂项目。&&&&& 与同行软件的比较:功能极其强大,操作相当专业。与Adobe公司其它软件如Photoshop、Primiere及Indesign等软件可以良好的兼容,在专业领域优势比较明显。
Adobe Photoshop
&&&&& 软件特点:知明度以及使用率最高的图像处理软件&&&&& 软件优势:使用业界标准的Adobe Photoshop CS软件更加快速地获取更好效果,同时为图形和Web设计、摄影及视频提供必不可少的新功能。
&&&&& 与同行软件的比较:这回Adobe的确给设计师们带来了很大的惊喜,Photoshop CS新增了许多强有力的功能,特别是对于摄影师来讲,这次它大大突破了以往Photoshop系列产品更注重平面设计的局限性,对数码暗房的支持功能有了极大的加强和突破。
&&&&& 软件特点:界面设计友好,空间广阔,操作精微细致。兼容性佳。&&&&& 软件优势:非凡的设计能力广泛地应用于商标设计、标志制作、模型绘制、插图描画、排版及分色输出等等诸多领域。市场领先的文件兼容性以及高质量的内容可帮助您将创意变为专业作品。从与众不同的徽标和标志到引人注目的营销材料以及令人赏心悦目的Web图形,应有尽有。
&&&&& 与同行软件的比较:功能强大,兼容性极好,可生成各种与其它软件相兼容的格式,操作较Illustrator简单,目前在国内中小型广告设计公司应用率极高。
Macromedia
&&&&& 软件特点:一个可视化的网页设计和网站管理工具,支持最新的Web技术,包含HTML检查、HTML格式控制、HTML格式化选项等。
&&&&& 软件优势:除了新的视频和动画特性,还提供了新的绘图效果和更好的脚本支持,同时也集成了流行的视频辑和编码工具,还提供软件允许用户测试移动中的 内容等新功能。
&&&&& 与同行软件的比较:在编辑上你可以选择可视化方式或者你喜欢的源码编辑方式。
&&&&& 软件特点:不论您拍摄的相片是什么类型-家人与朋友的,或是作为业余爱好而拍摄的艺术照-您都需要相片管理软件来轻松快捷地整理以及查看、修正和共享这些相片。
&&&&& 软件优势:ACDSee 9可以从任何存储设备快速“获取相片”,ACDSee 9可以根据元数据信息(如关键词、大小、拍摄日期)将相片自动分类。您还可以使用受密码保护的“隐私文件夹”这项新功能来存储机密信息。
&&&&& 与同行软件的比较:强大的邮件选项、幻灯放映、CD/刻录,还有让共享相片变得轻而易举的网络相册工具。使用红眼消除、色偏消除、曝光调整以及“相片修复”工具等快速修正功能来改善相片。
Ulead GIF Animator
&&&& &软件特点:友立公司出版的动画GIF制作软件,内建的Plugin有许多现成的特效可以立即套用,可将AVI文件转成动画GIF文件,而且还能将动画GIF图片最佳化,能将你放在网页上的动画GIF图档减肥,以便让人能够更快速的浏览网页。&&&&& 软件优势:这是一个很方便的 GIF 动画制作软件,由 Ulead Systems.Inc 创作。Ulead GIF Animator 不但可以把一系列图片保存为 GIF 动画格式,还能产生二十多种 2D 或 3D 的动态效果,足以满足您制作网页动画的要求。
&&&&& 与同行软件的比较:与其它图形文件格式不同的是, 一个GIF文件中可以储存多幅图片,这时, GIF 将其中存储的图片像播放幻灯片一样轮流显示, 这样就形成了一段动画。
&&&&& 软件特点:Autodesk公司的AutoCAD是目前应用广泛的CAD软件,具有完善的图形绘制功能、强大的图形编辑功能、可采用多种方式进行二次开发或用户定制、可进行多种图形格式的转换,具有较强的数据交换能力。
&&&&& 软件优势:AutoCAD2004采用了XP风格的界面,所有工具栏的图标都是真彩色的、蓝色基调,看起来很漂亮。
&&&&& 与同行软件的比较:AutoCAD2004终于开始完全支持无限次地撤消和恢复操作。在图像管理方面功能有所加强,如现在可以保存调出图层状态、将图层状态存盘、图层拷贝、图层转换等。
大头贴制作系统 V5.25
&&&&& 软件特点:大头贴制作系统就是本着简易操作的宗旨来开发的一套制作贴纸相的软件,用户只要简单的点一下鼠标就可以轻松制作出贴纸照片来。
&&&&& 软件优势:本软件不但能够打印出标准的大头贴,而且还支持将大头贴照片输出到屏幕保护程序以及将大头贴保存到硬盘,让你每时每刻都能看到自己亲手制作的大头贴!
&&&&& 与同行软件的比较:轻松简单的操作,轻松点几下鼠标,就可以轻松做出满意的大头贴,完全是傻瓜程式系统制作大头贴。
&&&&& &图像处理技术基本可以分成两大类:模拟图像处理( Image Processing)和数字图像处理(Digtal Image Processing)。
&&&&& &数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理(ImageUnderstanding)。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。
数字图像处理技术发展与应用
&&&& 数字图像处理技术使20世纪60年代随着计算机技术和VLSY Very Large Scale Integrati的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。
&&&& 视觉是人类最重要的感知手段,图像又是视觉的基础。早期图像处理的目的是改善图像质质量,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在年发回的几千张月球照片进行图像处理,如几何校正、灰度变换、去除噪声等,并考虑了太阳位置和月球环境的影响。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。
&&&& 数字图像处理技术取得的另一个巨大成就是在医学上。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,成为图像重建。年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术被授予诺贝尔奖,以表彰它对人类做出的划时代贡献。
&&&& 从20世纪70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理技术向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。
20世纪80年代末期,人们开始将其应用于地理信息系统,研究海图的自动读入、自动生成方法。数字图像处理技术的应用领域不断拓展。
&&&&&数字图像处理技术的大发展是从20世纪90年代初开始的。自年以来,小波理论与变换方法迅速发展,它克服了傅立叶分析不能用于局部分析等方面的不足之处,被认为是调和分析半个世纪以来工作之结晶。Mallat在年有效地将小波分析应用于图像分解和重构。小波分析被认为是信号与图像分析在数学方法上的重大突破。随后数字图像处理技术迅猛发展,到目前为止,图像处理在图像通讯、办公自动化系统、地理信息系统、医疗设备、卫星照片传输及分析和工业自动化领域的应用越来越多。
&&&& 进入21世纪,随着计算机技术的迅猛发展和相关理论的不断完善,数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就。属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等。该技术成为一门引人注目、前景远大的新型学科。
数字图像处理技术应用目的
一般来讲,对图像进行处理(或加工、分析)的主要目的有三个方面:(1)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是模式识别或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。(2)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。
(3)图像数据的变换、编码和压缩,以便于图像的存储和传输。
不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。
数字图像处理研究的内容主要有:
(1)图像增强当无法知道与图像退化有关的定量信息时,可以使用图像增强技术较为主观地改善图像的质量。(2)图像重建由图像的多个一维投影重建该图像,可看成是特殊的图像复原技术。(3)图像获取和图像表现阶段主要是把模拟图像信号转化为计算机所能接受的数字形式,以及把数字图像用所需要的形式显示出来。
(4)图像分析对图像中的不同对象进行分割、特征提取和表示,从而有利于计算机对图像进行分类、识别、理解或解释。(5)图像复原当造成图像退化的原因已知时,复原技术可用来进行图像的校正。复原技术是基于模型和数据的图像恢复,其目的是消除退化的影响,从而产生一个等价于理想成像系统所获得的图像。
(6)图像编码和压缩对图像进行编码的主要目的是为了压缩数据,便于存储和传输。当前的一些编码方法对图像分析和图像加密也有越来越多的应用。
数字图像处理的可分为三大类:第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中;第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法:第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。
由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。
数字图像处理主要应用于下面一些领域:(1)宇宙探测随着太空技术的发展,需要用数字图像处理技术处理大量的星体照片。
(2)通信包括图像传输、电视电话、电视会议。
(3)遥感分航空遥感和航天遥感。遥感图像需要用图像处理技术加工处理并提取有用的信息。可用于地质、矿藏勘探和森林、水利、海洋、农业等资源的调查;自然灾害预测预报;环境污染监测;气象卫星云图处理以及用于军事目的的地面目标识别。
(4)军事、公安、档案等其它方面的应用军事目标的侦察、制导和警戒系统、自动火器的控制及反伪装;公安部门的现场照片;指纹、手迹、印章、人像等的进一步处理和辨识;历史文字和图片档案的修复和管理;以及其它方面图像信息的显示、记录、处理和文字自动识别等。
(5)工业生产中的应用主要有产品质量检测、生产过程的自动控制、计算机辅助设计与制造等。
(6)生物医学领域中的应用X射线、超声、显微图像分析、计算机断层摄(即CT)分析和重建等。
(7)视频和多媒体系统目前,电视制作系统广泛使用图像处理、变形、合成技术。多媒体系统离不开静止图像和动态图像的采集、压缩、处理、存储和传输。(8)机器人视觉作为智能机器人的重要感觉器官,进行三维景物的理解和识别。主要用于军事侦察、危险环境作业、装配工作识别和定位以及邮政、家政服务等。
(9)科学计算可视化数字图像处理和计算机图形学紧密结合,形成了科学计算的新型研究工具。
遥感影像数字图像处理
遥感影像数字图像处理的内容主要有:
①数据压缩。以改进传输、存储和处理数据效率;
②图像恢复。即校正在成像、记录、传输或回放过程中引入的数据错误、噪声与畸变。包括辐射校正、几何校正等;
③信息提取。从经过增强处理的影像中提取有用的遥感信息。包括采用各种统计分析、集群分析、频谱分析等自动识别与分类。通常利用专用数字图像处理系统来实现,且依据目的不同采用不同算法和技术。
④影像增强。突出数据的某些特征,以提高影像目视质量。包括彩色增强、反差增强、边缘增强、密度分割、比值运算、去模糊等;
数字图像处理研究的内容:
&&& 1、图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
&&& 2、图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。
&&& 3、图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
&&& 4、图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
&&& 5、图像描述图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
&&&&6、图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类。
数字图像处理技术的主要优点
图像处理技术的主要有点有一下几个方面:
&&& 1、再现性好数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现。&
&&& 2、适用面宽图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、图像或红外图像等)。从图像反映的客观实体尺度看,可以小到图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
&& &3、处理精度高按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。
&&& 4、灵活性高图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。由于图像的光学处理从原理上讲只能进行线性运算,这极大地限制了光学图像处理能实现的目标。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。
今后需进一步研究的问题
&&&&& 自20世纪60年代第三代数字计算机问世以后,数字图像处理技术出现了空前的发展,在该领域中需要进一步研究的问题主要有如下五个方面:
一、在进一步提高精度的同时着重解决处理速度问题;
二、加强软件研究,开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法;
三、加强理论研究,逐步形成处理科学自身的理论体系;
四、加强边缘学科的研究工作,促进图像处理技术的发展;
五、时刻注意图像处理领域的标准化问题。
图像识别技术的核心——模式识别
&&&&& 图像识别技术主要涉及数字信号处理和模式识别两个方面的,数字信号处理是模式识别的前提和铺垫,模式识别是图像识别的实质性阶段。图像识别是对一幅图像进行适当的处理后将其中的目标对象识别出来。
&&&&& 模式识别就是根据观察到的事物的模式对事物进行分类的过程。在图像识别技术中,模式识别占有核心的地位。所有的图像处理技术都是为了更好地进行模式识别做准备。模式识别是图像识别的实质性阶段。
&&&&& 模式识别方法分两种:统计模式识别方法和结构(句法)模式识别方法。与此相应的模式识别系统都由两个过程所组成,即设计和实现。设计是指用一定数量的样本(叫做训练集或学习集)进行分类器的设计。实现是指用所设计的分类器对待识别的样本进行分类决策。
&&&&& 近几十年来,模式识别技术发展很快。然而,发展较成熟、应用较广泛的主要是统计模式识别技术。
统计模式识别
&&&&& 从一个广义的角度看,模式识别可以看成是一种机器学习的过程。按照机器学习过程的性质,可以将模式识别方法分成有监督的模式识别方法和非监督的模式识别方法,后者又称为聚类分析方法。这两种方法在图像识别中都有广泛的应用。
(1)有监督的模式识别方法
  & 从识别技术的基本思路和方法看,有监督的模式识别可以分成两类:基于模型的方法和直接分类的方法。
  & 基于模型的方法的基础是贝叶斯(Bayes)决策理论方法,它对模式分析和分类器的设计有着实际的指导意义,是统计模式识别中的一个基本方法,用这个方法进行分类时要求:
  ①各类别总体的概率分布(即所谓的先验概率和类条件概率)是已知的;
  ②要决策分类的类别数是一定的。
(2)非监督的模式识别方法
  & 在很多实际应用中由于缺少形成模式类过程的知识.或者由于实际工作中的困难(例如卫星遥感照片上各像元的分类问题),我们往往只能用没有类别卷标的样本集进行工作。这就是通常所说的非监督学习方法。一般来说非监督学习方法可以分成两大类,即基于概率密度函数估计的直接方法和基于样本间相似性度量的间接聚类方法。不论是哪一种方法,在把样本集划分为若干个子集(类别)后,我们或者直接用它解决分类问题.或者把它作为训练样本集进行分类器设计。
结构模式识别
&&&&& 在一些图像识别的问题中,往往需要了解图像的结构信息。识别的目的不仅要能够把图像指定到一个特定类别(把它分类),而且还要描述图像的形态。这时用语言结构法来识别图像就很有吸引力。
模糊模式识别方法
&&&&& 1965年,Zadeh提出了著名的模糊集理论,从此创建了一个新的学科--模糊数学。模糊集理论是对传统集合理论的一种推广,在传统集合理论中,一个元素或者属于一个集合,或者不属于一个集合;而对于模糊集来说,每一个元素都是以一定的程度属于某个集合,也可以同时以不同的程度属于几个集合。对人们现实生活中大量使用的一些含义确定,但又不准确的语言表述。因此,模糊数学被很多人认为是解决很多人工智能问题,尤其是常识性问题的最合适的数学。
  & 将模糊技术应用于各个不同的领域,就产生了一些新的学科分支,比如和人工神经网络相结合,就产生了所谓模糊神经网络;应用到自动控制中,就产生了模糊控制技术和系统;应用到模式识别领域来,自然就是模糊模式识别。
  & 模式识别从一开始就是模糊技术应用研究的一个活跃领域。一方面,人们针对一些模糊式识别问题设计了相应的模糊模式识别系统;另一方面,对传统模式识别中的一些方法,人们用模糊数学对它们进行了很多改进。这些研究逐渐形成了模糊模式识别这一新的学科分支。
神经网络识别方法
  & 从深层意义上看,模式识别与人工智能所研究的是如何用计算机实现人脑的一些功能。一方面,从要实现的功能出发,我们可以将功能分解成子功能,直至设计出算法来实现这些子功能。这是自顶向下的分析方法。另一方面,人脑无论多么复杂。都可以看作是由大量神经元组成的巨大的神经网络。从神经元的基本功能出发,逐步从简单到复杂组成各种神经网络,研究它所能实现的功能,是自底向上的综合方法。两种方法各有优缺点,适用于不同的问题。
  & 应当指出的是,人工神经网络并不是一个十分严格的概念,而且,当感知器等基本模型最早提出时也并没有被冠以人工神经网络的名字。现在,人们倾向于把那些具有大量(或多个)简单计算单元、单元之间具有广泛的连接、且连接的强度(有时还包括单元的计算特性)可根据输入输出数据调节的算法或结构模型称为一种人工神经网络。不同的单元计算特性(神经元类型)、单元间的连接方式(网络结构)和连接强度调节的规律(学习算法)形成了不同的人工神经网络模型。
  & 产生于不同起源和针对不同目的的神经网络模型有很多种,多层感知器、自组织映像和Hopfield网络都是其中具有代表性的模型之一。前两者也是在模式识别应用中最典型的两种模型,后者更多地用于优化组合问题,比如模式识别中的特征选择问题。
  & 神经网络模式识别方法的一个重要特点就是它能够较有效地解决很多非线性问题,而且在很多工程应用中取得了成功。但另一方面,神经网络中有很多重要的问题尚没有从理论上得到解决,因此实际应用中仍有许多因素需要凭经验确定,比如如何选择网络节点数、初始权值和学习步长等;局部极小点问题、过学习与欠学习问题等也是在很多神经网络方法中普遍存在的问题。有时会出现这样的情况,即同样一种神经网络方法,在一些应用中可能取得很好的结果,而在另外一些相似的应用中却可能完全失败。还有研究表明,虽然多层感知器网络理论上具有实现任意复杂的分类的能力,但是对于一些识别中需要有可靠的拒绝的情况(比如身份确认),多层感知器似乎无法胜任。这些问题的存在,已经在很大程度上制约了人工神经网络理论和应用的发展。值得高兴的是,现在人们已经充分认识到这些问题,并开始进行更深入的研究,比如统计学习理论就已经在提供研究模式识别和神经网络问题的一个更完善的理论框架上取得了长足的进展。
人面图像识别技术
&&&&& 据了解,今年上半年以来,利用ATM机犯罪的案件数量较去年同期少很多,这跟ATM背后的不无关系。
&&&&& 犯罪分子在克隆客户的银行卡后,常常避开柜台取款,绝大部分去柜员机上取款,但他们都很清楚ATM机上安装有监控,为了逃避打击,他们常常在夜间戴上摩托车头盔、打伞、套上头罩等方法遮住面孔然后插卡取款。ATM问世初期,ATM监控系统发展还不成熟,不法分子的“蒙面技术”一度让案情进展受阻甚至最终成为无头公案。ATM监控系统的生产厂商们为此绞尽脑汁,其中南京远拓科技有限公司取得卓越成效。他们研发的人面图像识别技术能有效判断蒙面等遮挡面部特征的取款行为,及时向中心报警,避免造成合法用户的损失。从而减少了类似的犯罪行为的发生,保证了人民的合法财产。
&&&& &远拓科技公司研发的人像识别技术可以实时判断取款行为是否正常,一旦出现异常会立即触发报警。该功能具有良好的判别能力,主机在对拍摄的画面进行分析的过程中,只有当发现不能完整的捕捉到人像或无人像显示时,才会上传信息至控制中心,对正常戴眼镜的取款人不会发生误报动作,所以正常戴眼镜取款的用户大可放心。控制中心的工作人员在接到报警信息后,对画面进行观察,如有可疑便可立即采取行动。
除了对企图以蒙面的方法来遮挡面部以达到实施犯罪行为目的的不法分子有识别作用以外,对非蒙面取款的犯罪嫌疑人,系统会检索后台公安部门提供的犯罪嫌疑人照片库,一旦发现可疑也会立即触发110报警,并将犯罪嫌疑人所在的地点、经纬度、时间、日期、现场图像,所使用的银行卡卡号等信息实时传递到110报警平台。
图像识别技术在网版印刷机上的应用
&&&&& 目前,我国的网版的发展速度较快。根据我国印刷机械制造业的发展政策要求,应该在现有资源的条件下,本着紧跟世界科技发展潮流,抓紧解决重点核心技术课题,促进印刷机械科技的发展。为此,研究制造高水平、高精度的网版印刷机是未来发展的方向。随着现代工业技术的迅速发展,当今诸多科学领域的研究对象正在不断由宏观转向微观,一些新型产品也开始由宏观型转向微观型。无论是生物工程(细胞操作)、微、等都向着超精密加工方向发展。对网版印刷机的精密定位技术的要求也越来越高。当前,国际上发展潮流是采用图像识别系统用于高精度的专用网版印刷机已经很普遍,我国在这方面的研究起步较晚,许多国产网版印刷机还仍然采用传统的机械定位方式,这种机械定位的网版印刷机是无法满足高精度、小尺寸印件的生产需求。但国内生产企业已经开始对此有所认识并追逐先进潮流向前发展,据报道,国内深训市网印巨星机电设备有限公司,跟踪国际上最新电子印刷技术水平,率先开发生产了WJ-4040系列平面网版印刷机(专供玻璃印刷)。该机的研制成功为我国网版印刷机采用先进的图像识别系统,迎合国际先进潮流,发展国产专用网版印刷机具有十分重要的现实意义。本文仅就图像识别系统有关知识介绍如下。
一、图像识别系统定位的工作原理
&&&& 在现实生活中,人们可以很容易的“看到”一幅画面,但这一个十分“简单”过程并非如此简单。深入研究大致分为:成像在视网膜上;其次是大脑对图像进行认识、理解和分析;最后根据上述一系列处理的结果做出反应。由于图像识别系统基本上是摸仿了人对事物的认识过程,图像识别系统定位是采用了CCD(如同人的眼睛)通过收集并聚焦来自目标的反射光线,借助必要的光学系统将此光投射于CCD光敏面上的光的空间分布信息转换为按时序输出的电信号—视频图像信号,可以在监视器上重现图像。
&&&& &把相关数据传送给控制主机(计算机),控制主机通过对这些原始数据进行必要的运算后(相当人大脑对图像的认识、理解、分析),驱动执行机构发出指令使机械运行部分运动,从而实现高精度的自动定位。现以用光学定位全自动液晶显示器玻璃网印机为例说明如下:全自动网印机上的所谓光学定位系统如上所述,它能做到迅速准确地进行自动定位,其对位原理就是依靠一束光线通过光路系统照射在承印玻璃定位标记和网印版的网印对位标记上,再经过丝网上把光路反射到CCD摄像机中,摄像机通过上述的光电转换过程,再将信号送入监视器中把摄到的图像放大显示出来。印刷机操作者可从幕上看到被放大的图像,网版和玻璃的对位偏差比较容易地被发现和及时加以修正。同时在印刷过程中监示器还能把每片印刷玻璃对位情况反映出来,因此由于丝网变形等所引起的错位或者因曝光时跑位等造成的偏差也都有了被捡查出的可能。
二、CCD图像
&&&&& 作为一种基础器件,因能实现信息的获取、转换和视觉功能的扩展,并能给出直观、真实、层次多、内容丰富的可视图像信息在现代社会中得到了越来越广泛地应用。CCD(ChargedCoupledDevice)于1969年在贝尔试验室研制成功,之后由日本开始批量生产,经过30多年的发展历程,从初期的10多万像素已经发展至今天主流应用的500万像素。CCD类型分为线阵(Linear)与面阵(Area)两种,其中线阵应用于影像及传真机上,面阵型多应用于、摄录影机、监视摄影机等多项影像输入产品上。目前CCD像元数已从100万像元提高到万像元以上,大面阵、小像元(感光小单元简称)的CCD摄像机层出不穷。随着超大规模微加工技术的发展,CCD传感器的分辨率将越来越高。CCD是固态图像传感器的一类,即电荷耦合式图像传感器,固态图像传感器是指将布设在半导体衬底上许多能实现光-电信号转换的小单元,用所控制的时钟脉冲实现读取的一类功能器件。三、图像识别系统的基本组成
&&&&& 图像处理及识别系统一般由、摄像机、、图像处理单元(单元留有与控制主机通信,最终达到控制运动执行机构进行精确定位)、监视器组成。它是集光、电、机于一身的产品,它的核心部件是光电件(CCD)。
四、图像的判读
&&&&& 通过图像判读可在序列图像中获取运动目标的一个或多个特征点相对于某一个非移动点在靶面上的相对位置。为满足精确判读的需要,采用像元数据细分技术,将图像局部放大显示,便于操作人员对目标点位的精确识别和定位,可有效地降低操作的对准误差,提高判读精度。判读基准(空间基准)即拍摄测量标记,测量标记应尽可能地设置在物体的运动平面内,可以在视场范围内立标记;对小目标也可以在目标上划线,也可以用任意线段来表示。对图像中的目标物图像进行识别和判读可采用两种方法。第一种就是手动判读,由工作人员来识别目标并判读其运动轨迹和姿态;第二种就是自动判读,由软件中的程序自动识别目标并判读目标运动轨迹和姿态。但自动判读过程中依然离不开人员来进行交流互动和控制。
&&&&& 图像识别技术是精密测试技术领域内最具有发展潜力的一项新技术,它综合运用了电子学、光学探测、图像处理和计算机等技术,将机器视觉引入到印刷机械制造工业中,实现对印刷物件位置尺寸的快速测量,它具有非接触性、速度快、柔性好等突出优点,将有力地提高国产网版印刷机的竞争力,在现代印刷机械制造中有着重要的应用前景。
图像拼接技术的定义和分类
&&&&& 图像拼接技术就是将数张有重叠部分的图像拼成一幅大型的无缝高分辨率图像的技术。图像配准和图像融合是图像拼接的两个关键技术。图像配准是图像融合的基础,而且图像配准算法的计算量一般非常大,因此图像拼接技术的发展很大程度上取决于图像配准技术的创新。早期的图像配准技术主要采用点匹配法,这类方法速度慢、精度低,而且常常需要人工选取初始匹配点,无法适应大数据量图像的融合。图像拼接流程图像拼接的方法很多,不同的算法步骤会有一定差异,但大致的过程是相同的。一般来说,图像拼接主要包括以下五步:
一、图像预处理。包括数字图像处理的基本操作(如去噪、边缘提取、直方图处理等)、建立图像的匹配模板以及对图像进行某种变换(如傅里叶变换、小波变换等)等操作。二、图像配准。就是采用一定的匹配策略,找出待拼接图像中的模板或特征点在参考图像中对应的位置,进而确定两幅图像之间的变换关系。
三、建立变换模型。根据模板或者图像特征之间的对应关系,计算出数学模型中的各参数值,从而建立两幅图像的数学变换模型。
四、统一坐标变换。根据建立的数学转换模型,将待拼接图像转换到参考图像的坐标系中,完成统一坐标变换。
五、融合重构。将带拼接图像的重合区域进行融合得到拼接重构的平滑无缝全景图像。
图像拼接技术的研究背景及研究意义
&&&&& 首先我们来谈谈图像拼接技术的研究背景。
图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。
 & 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representais)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。
&&&& &图像拼接技术的应用前景十分广阔,下面简要介绍两个方面:
&&& 1、微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。
&&& 2、在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。
&&&&& 由上述可以看书图像拼接技术的研究意义所在。
图像拼接技术算法的分类
&&&&&& 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:
  (1) 基于区域相关的拼接算法。&&&&& 这是最传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。&&&&& 当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。该方法的拼接效果要好一些,成功率有所提高。&&& &(2) 基于特征相关的拼接算法。&&&&& 基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。&&&&& 基于特征的配准方法有两个过程:特征抽取和特征配准。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集冈。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和边界检测上。如canny 算子、拉普拉斯高斯算子、区域生长。抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。
图像拼接具体步骤
&&& 拼接技术主要有三个主要步骤:图像预处理、图像配准、图像融合与边界平滑。
&&& 图像的获取方式:图像拼接技术原理是根据图像重叠部分将多张衔接的图像拼合成一张高分辨率全景图。这些有重叠部分的图像一般由两种方法获得: 一种是固定的转轴,然后绕轴旋转所拍摄的照片;另一种是固定照的光心 ,水平摇动所拍摄的照片。其中,前者主要用于远景或遥感图像的获取 ,后者主要用于显微图像的获取,它们共同的特点就是获得有重叠的二维图像。
&&& 二、图像的预处理
1、图像的校正
&&&&& 当照相系统的镜头或者照相装置没有正对着待拍摄的景物时候,那么拍摄到的景物图像就会产生一定的变形。这是几何畸变最常见的情况。另外,由于光学成像系统或扫描系统的限制而产生的枕形或桶形失真,也是几何畸变的典型情况。几何畸变会给图像拼接造成很大的问题,原本在两幅图像中相同的物体会因为畸变而变得不匹配,这会给图像的配准带来很大的问题。因此,解决几何畸变的问题显得很重要。
&&&&& 图像校正的基本思路是,根据图像失真原因,建立相应的数学模型,从被污染或畸变的图象信号中提取所需要的信息,沿着使图象失真的逆过程恢复图象本来面貌。实际的复原过程是设计一个,使其能从失真图象中计算得到真实图象的估值,使其根据预先规定的误差准则,最大程度地接近真实图象。
2、图像噪声的抑制
&&&& 图像噪声可以理解为妨碍人的视觉感知,或妨碍系统对所接受图像源信息进行理解或分析的各种因素,也可以理解成真实信号与理想信号之间存在的偏差。一般来说,噪声是不可预测的随机信号,通常采用概率统计的方法对其进行分析。噪声对图像处理十分重要,它影响图像处理的各个环节,特别在图像的输入、采集中的噪声抑制是十分关键的问题。若输入伴有较大的噪声,必然影响图像拼接的全过程及输出的结果。根据噪声的来源,大致可以分为外部噪声和内部噪声;从统计数学的观点来定义噪声,可以分为平稳噪声和非平稳噪声。各种类型的噪声反映在图像画面上,大致可以分为两种类型。一是噪声的幅值基本相同,但是噪声出现的位置是随机的,一般称这类噪声为椒盐噪声。另一种是每一点都存在噪声,但噪声的幅值是随机分布的,从噪声幅值大小的分布统计来看,其密度函数有高斯型、瑞利型,分别成为高斯噪声和瑞利噪声,又如频谱均匀分布的噪声称为白噪声等。
a、均值滤波
&&&& 所谓均值滤波实际上就是用均值替代原图像中的各个像素值。均值滤波的方法是,对将处理的当前像素,选择一个模板,该模板为其邻近的若干像素组成,用模板中像素的均值来替代原像素的值。如图2.4所示,序号为0是当前像素,序号为1至8是邻近像素。求模板中所有像素的均值,再把该均值赋予当前像素点((x, y),作为处理后图像在该点上的灰度g(x,y),即
&&&&&&&&&&&&& g(x,y)=
其中,s为模板,M为该模板中包含像素的总个数。
b、中值滤波
&&&&&中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。它的核心算法是将模板中的数据进行排序,这样,如果一个亮点(暗点)的噪声,就会在排序过程中被排在数据序列的最右侧或者最左侧,因此,最终选择的数据序列中见位置上的值一般不是噪声点值,由此便可以达到抑制噪声的目的。
&&&&& 三、图像配准算法
1、图像配准的概念
&&&&&& 图像配准就是图像之间的对齐。图像配准定义——对从不同传感器或不同时间或不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程。为了更清楚图像配准的任务,我们将图像配准问题用更精确的数学语言描述出来。
2、基于区域的配准
2.1逐一比较法
该算法的优点:
a、算法思路比较简单,容易理解,易于编程实现。
b、选用的模板越大,包含的信息就越多,匹配结果的可信度也会提高,同时能够对参考图像进行全面的扫描。
该算法的缺点:
a、很难选择待配准图像分块。因为一个如果分块选择的不正确,缺少信息量,则不容易正确的匹配,即发生伪匹配。同时,如果分块过大则降低匹配速度,如果分块过小则容易降低匹配精度。
b、对图像的旋转变形不能很好的处理。算法本身只是把待配准图像分块在标准参考图像中移动比较,选择一个最相似的匹配块,但是并不能够对图像的旋转变形进行处理,因此对照片的拍摄有严格的要求。
2.2分层比较法
&&&&& 图像处理的塔形(或称金字塔:Pyramid)分解方法是由Burt和Adels首先提出的,其早期主要用于图像的压缩处理及机器人的视觉特性研究。该方法把原始图像分解成许多不同空间分辨率的子图像,高分辨率(尺寸较大)的子图像放在下层,低分辨率(尺寸较小)的图像放在上层,从而形成一个金字塔形状。
在逐一比较法的思想上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。利用图像的塔形分解,可以分析图像中不同大小的物体。同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来指导对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计算对应像素点灰度差的平方和,记录最小值的网格位置。其次,以此位置为中心进行精确匹配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配位置。
算法的具体实现步骤如下:
(1)将待匹配的两幅图像中2
2邻域内的像素点的像素值分别取平均,作为这一区域(2
2)像素值,得到分辨率低一级的图像。然后,将此分辨率低一级的图像再作同样的处理,也就是将低一级的图像4
4邻域内的像素点的像素值分别取平均,作为这一区域(4 4)点的像素值,得到分辨率更低一级的图像。依次处理,得到一组分辨率依次降低的图像。
(2)从待匹配的两幅图像中分辨率最低的开始进行匹配搜索,由于这两幅图像像素点的数目少,图像信息也被消除一部分,因此,此匹配位置是不精确的。所以,在分辨率更高一级的图像中搜索时,应该在上一次匹配位置的附近进行搜索。依次进行下去,直到在原始图像中寻找到精确的匹配位置。
算法的优点:
a、该算法思路简单,容易理解,易于编程实现。
b、该算法的搜索空间比逐一比较要少,在运算速度较逐一比较法有所提高。
算法的缺点:
a、算法的精度不高。在是在粗略匹配过程中,移动的步长较大,很有可能将第一幅图像上所取的网格划分开,这样将造成匹配中无法取出与第一幅图像网格完全匹配的最佳网格,很难达到精确匹配。
b、对图像的旋转变形仍然不能很好的处理。与逐一比较法一样,该算法只是对其运算速度有所改进,让搜索空间变小,并无本质变化,因此对图像的旋转变形并不能进行相应处理。
2.3相位相关法
相位相关度法是基于频域的配准常用算法。它将图像由空域变换到频域以后再进行配准。该算法利用了互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,具有一定的抗干扰能力,而且所获得的相关峰尖锐突出,位移检测范围大,具有较高的匹配精度。
相位相关度法的优点:
a、该算法简单速度快,因此经常被采用。对于其核心技术傅立叶变换,现在己经出现了很多有关的快速算法,这使得该算法的快速性成为众多算法中的一大优势。另外,傅立叶变换的硬件实现也比其它算法容易。
b、该算法抗干扰能力强,对于亮度变化不敏感。
相位相关度法的缺点:
a、该算法要求图像有50%左右的重叠区域,在图像重叠区域很小的时,算法的结果很难保证,容易造成误匹配。
b、由于Fourier变换依赖于自身的不变属性,所以该算法只适用于具有旋转、平移、比例缩放等变换的图像配准问题。对于任意变换模型,不能直接进行处理,而要使用控制点方法,控制点方法可以解决诸如多项式、局部变形等问题。
3、基于特征的配准
3.1比值匹配法
 &&& 比值匹配法算法思路是利用图像中两列上的部分像素的比值作为模板,即在参考图像T的重叠区域中分别在两列上取出部分像素,用它们的比值作为模板,然后在搜索图S中搜索最佳的匹配。匹配的过程是在搜索图S中,由左至右依次从间距相同的两列上取出部分像素,并逐一计算其对应像素值比值;然后将这些比值依次与模板进行比较,其最小差值对应的列就是最佳匹配。这样在比较中只利用了一组数据,而这组数据利用了两列像素及其所包含的区域的信息。
该算法的具体实现步骤如下:
(1)在参考图像T中间隔为c个像素的距离上的两列像素中,各取m个像素,计算这m个像素的比值,将m个比值存入数组中,将其作为比较的模板。
(2)从搜索图S中在同样相隔c个像素的距离上的两列,各取出m+n个像素,计算其比值,将m+n个比值存入数组。假定垂直错开距离不超过n个像素,多取的n个像素则可以解决图像垂直方向上的交错问题。
(3)利用参考图像T中的比值模板在搜索图S中寻找相应的匹配。首先进行垂直方向上的比较,即记录下搜索图S中每个比值数组内的最佳匹配。再将每个数组的组内最佳匹配进行比较,即进行水平方向的比较,得到的最小值就认为是全局最佳匹配。此时全局最佳匹配即为图像间在水平方向上的偏移距离,该全局最佳匹配队应的组内最佳匹配即为图像间垂直方向上的偏移距离。
比值匹配法的优点:
a、算法思路清晰简单,容易理解,实现起来比较方便。
b、在匹配计算的时候,计算量小,速度快。
比值匹配法的缺点:
a、利用图像的特征信息太少。只利用了两条竖直的平行特征线段的像素的信息,没有能够充分利用了图像重叠区域的大部分特征信息。虽然算法提到,在搜索图S中由左至右依次从间距相同的两列上取出部分像素,计算其对应像素的比值,然后将这些比值依次与模版进行比较,好像是利用了搜索图S中的重叠区域的大部分图像信息,但在参考图像T中,只是任意选择了两条特征线,没有充分利用到参考图像T的重叠区域的特征信息。
b、对图片的采集提出了较高的要求。此算法对照片先进行垂直方向上的比较,然后再进行水平方向上的比较,这样可以解决上下较小的错开问题。在采集的时候只能使照相机在水平方向上移动。然而,有时候不可避免的照相机镜头会有小角度的旋转,使得拍摄出来的照片有一定的旋转,在这个算法中是无法解决的。而且对重叠区域无明显特征的图像,比较背景是海洋或者天空,这样在选取特征模版的时候存在很大的问题。由于照片中存在大块纹理相同的部分,所以与模版的差别就不大,这样有很多匹配点,很容易造成误匹配。
c、不易对两条特征线以及特征线之间的距离进行确定。算法中在参考图像T的重叠区域中取出两列像素上的部分像素,并没有给出选择的限制。然而在利用拼接算法实现自动拼接的时候,如果选取的特征线不是很恰当,那么这样的特征线算出来的模版就失去了作为模版的意义。同时,在确定特征线间距时,选的过大,则不能充分利用重叠区域的图像信息。选择的过小,则计算量太大。
馆藏&10796
TA的推荐TA的最新馆藏[转]&[转]&[转]&[转]&[转]&[转]&[转]&
喜欢该文的人也喜欢}

我要回帖

更多关于 自我形象紊乱护理措施 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信