JVM内存溢出有什么优化,具体使用lte景区场景优化

JVM内存管理和JVM性能优化
1.JVM的gc概述
gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存。java语言并不要求jvm有gc,也没有规定gc如何工作。不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作。
在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能。有些垃圾收集专用于特殊的应用程序。比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率。理解了应用程序的工作负荷和jvm支持的垃圾收集算法,便可以进行优化配置垃圾收集器。
垃圾收集的目的在于清除不再使用的对象。gc通过确定对象是否被活动对象引用来确定是否收集该对象。gc首先要判断该对象是否是时候可以收集。两种常用的方法是引用计数和对象引用遍历。
1.1.引用计数
引用计数对特定对象的所有引用数,也就是说,当应用程序创建引用以及引用超出范围时,jvm必须适当增减引用数。当某对象的引用数为0时,便可以进行垃圾收集。
1.2.对象引用遍历
早期的jvm使用引用计数,现在大多数jvm采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,gc必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。
下一步,gc要删除不可到达的对象。删除时,有些gc只是简单的扫描堆栈,删除未标记的未标记的对象,并释放它们的内存以生成新的对象,这叫做清除(sweeping)。这种方法的问题在于内存会分成好多小段,而它们不足以用于新的对象,但是组合起来却很大。因此,许多gc可以重新组织内存中的对象,并进行压缩(compact),形成可利用的空间。
为此,gc需要停止其他的活动活动。这种方法意味着所有与应用程序相关的工作停止,只有gc运行。结果,在响应期间增减了许多混杂请求。另外,更复杂的gc不断增加或同时运行以减少或者清除应用程序的中断。有的gc使用单线程完成这项工作,有的则采用多线程以增加效率。
2.几种垃圾回收机制
2.1.标记-清除收集器
这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。
2.2.标记-压缩收集器
有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。
2.3.复制收集器
这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中。gc运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。
2.4.增量收集器
增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。
2.5.分代收集器
这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。jvm生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。
2.6.并发收集器
并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。
2.7.并行收集器
并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多cpu机器上使用多线程技术可以显著的提高java应用程序的可扩展性。
3.Sun HotSpot 1.4.1 JVM堆大小的调整
Sun HotSpot 1.4.1使用分代收集器,它把堆分为三个主要的域:新域、旧域以及永久域。Jvm生成的所有新对象放在新域中。一旦对象经历了一定数量的垃圾收集循环后,便获得使用期并进入旧域。在永久域中jvm则class和method对象。就配置而言,永久域是一个独立域并且不认为是堆的一部分。
下面介绍如何控制这些域的大小。可使用-Xms和-Xmx 控制整个堆的原始大小或最大值。
下面的命令是把初始大小设置为128M:
java –Xms128m
–Xmx256m为控制新域的大小,可使用-XX:NewRatio设置新域在堆中所占的比例。
下面的命令把整个堆设置成128m,新域比率设置成3,即新域与旧域比例为1:3,新域为堆的1/4或32M:
java –Xms128m –Xmx128m–XX:NewRatio =3可使用-XX:NewSize和-XX:MaxNewsize设置新域的初始值和最大值。
下面的命令把新域的初始值和最大值设置成64m:
java –Xms256m –Xmx256m –Xmn64m
永久域默认大小为4m.运行程序时,jvm会调整永久域的大小以满足需要。每次调整时,jvm会对堆进行一次完全的垃圾收集。
使用-XX:MaxPerSize标志来增加永久域搭大小。在WebLogic Server应用程序加载较多类时,经常需要增加永久域的最大值。当jvm加载类时,永久域中的对象急剧增加,从而使jvm不断调整永久域大小。为了避免调整,可使用-XX:PerSize标志设置初始值。
下面把永久域初始值设置成32m,最大值设置成64m.
java -Xms512m -Xmx512m -Xmn128m -XX:PermSize=32m -XX:MaxPermSize=64m
默认状态下,HotSpot在新域中使用复制收集器。该域一般分为三个部分。第一部分为Eden,用于生成新的对象。另两部分称为救助空间,当Eden充满时,收集器停止应用程序,把所有可到达对象复制到当前的from救助空间,一旦当前的from救助空间充满,收集器则把可到达对象复制到当前的to救助空间。From和to救助空间互换角色。维持活动的对象将在救助空间不断复制,直到它们获得使用期并转入旧域。使用-XX:SurvivorRatio可控制新域子空间的大小。
同NewRation一样,SurvivorRation规定某救助域与Eden空间的比值。比如,以下命令把新域设置成64m,Eden占32m,每个救助域各占16m:
java -Xms256m -Xmx256m -Xmn64m -XX:SurvivorRation =2
如前所述,默认状态下HotSpot对新域使用复制收集器,对旧域使用标记-清除-压缩收集器。在新域中使用复制收集器有很多意义,因为应用程序生成的大部分对象是短寿命的。理想状态下,所有过渡对象在移出Eden空间时将被收集。如果能够这样的话,并且移出Eden空间的对象是长寿命的,那么理论上可以立即把它们移进旧域,避免在救助空间反复复制。但是,应用程序不能适合这种理想状态,因为它们有一小部分中长寿命的对象。最好是保持这些中长寿命的对象并放在新域中,因为复制小部分的对象总比压缩旧域廉价。为控制新域中对象的复制,可用-XX:TargetSurvivorRatio控制救助空间的比例(该值是设置救助空间的使用比例。如救助空间位1M,该值50表示可用500K)。该值是一个百分比,默认值是50.当较大的堆栈使用较低的sruvivorratio时,应增加该值到80至90,以更好利用救助空间。用-XX:maxtenuring
threshold可控制上限。
为放置所有的复制全部发生以及希望对象从eden扩展到旧域,可以把MaxTenuring Threshold设置成0.设置完成后,实际上就不再使用救助空间了,因此应把SurvivorRatio设成最大值以最大化Eden空间,设置如下:
java … -XX:MaxTenuringThreshold=0 –XX:SurvivorRatio=50000 …
4.BEA JRockit JVM的使用
Bea WebLogic 8.1使用的新的JVM用于Intel平台。在Bea安装完毕的目录下可以看到有一个类似于jrockit81sp1_141_03的文件夹。这就是Bea新JVM所在目录。不同于HotSpot把字节码编译成本地码,它预先编译成类。JRockit还提供了更细致的功能用以观察JVM的运行状态,主要是独立的GUI控制台(只能适用于使用Jrockit才能使用jrockit81sp1_141_03自带的console监控一些cpu及memory参数)或者WebLogic
Server控制台。
Bea JRockit JVM支持4种垃圾收集器:
4.1.1.分代复制收集器
它与默认的分代收集器工作策略类似。对象在新域中分配,即JRockit文档中的nursery.这种收集器最适合单cpu机上小型堆操作。
4.1.2.单空间并发收集器
该收集器使用完整堆,并与背景线程共同工作。尽管这种收集器可以消除中断,但是收集器需花费较长的时间寻找死对象,而且处理应用程序时收集器经常运行。如果处理器不能应付应用程序产生的垃圾,它会中断应用程序并关闭收集。
分代并发收集器 这种收集器在护理域使用排它复制收集器,在旧域中则使用并发收集器。由于它比单空间共同发生收集器中断频繁,因此它需要较少的内存,应用程序的运行效率也较高,注意,过小的护理域可以导致大量的临时对象被扩展到旧域中。这会造成收集器超负荷运作,甚至采用排它性工作方式完成收集。
4.1.3.并行收集器
该收集器也停止其他进程的工作,但使用多线程以加速收集进程。尽管它比其他的收集器易于引起长时间的中断,但一般能更好的利用内存,程序效率也较高。
默认状态下,JRockit使用分代并发收集器。要改变收集器,可使用-Xgc:&gc_name&,对应四个收集器分别为gencopy,singlecon,gencon以及parallel.可使用-Xms和-Xmx设置堆的初始大小和最大值。要设置护理域,则使用-Xns:java –jrockit –Xms512m –Xmx512m –Xgc:gencon –Xns128m…尽管JRockit支持-verbose:gc开关,但它输出的信息会因收集器的不同而异。JRockit还支持memory、load和codegen的输出。
注意 :如果 使用JRockit JVM的话还可以使用WLS自带的console(C:\bea\jrockit81sp1_141_03\bin下)来监控一些数据,如cpu,memery等。要想能构监控必须在启动服务时startWeblogic.cmd中加入-Xmanagement参数。
5.如何从JVM中获取信息来进行调整
-verbose.gc开关可显示gc的操作内容。打开它,可以显示最忙和最空闲收集行为发生的时间、收集前后的内存大小、收集需要的时间等。打开-xx:+ printgcdetails开关,可以详细了解gc中的变化。打开-XX: + PrintGCTimeStamps开关,可以了解这些垃圾收集发生的时间,自jvm启动以后以秒计量。最后,通过-xx: + PrintHeapAtGC开关了解堆的更详细的信息。为了了解新域的情况,可以通过-XX:=PrintTenuringDistribution开关了解获得使用期的对象权。
6.Pdm系统JVM调整
6.1.:前提内存1G 单CPU
可通过如下参数进行调整:-server 启用模式(如果CPU多,服务器机建议使用此项)
-Xms,-Xmx一般设为同样大小。 800m
-Xmn 是将NewSize与MaxNewSize设为一致。320m
-XX:PerSize 64m
-XX:NewSize 320m 此值设大可调大新对象区,减少Full GC次数
-XX:MaxNewSize 320m
-XX:NewRato NewSize设了可不设。4
-XX: SurvivorRatio 4
-XX:userParNewGC 可用来设置并行收集
-XX:ParallelGCThreads 可用来增加并行度 4
-XXUseParallelGC 设置后可以使用并行清除收集器
-XX:UseAdaptiveSizePolicy 与上面一个联合使用效果更好,利用它可以自动优化新域大小以及救助空间比值
6.2.客户机:通过在JNLP文件中设置参数来调整客户端JVM
JNLP中参数:initial-heap-size和max-heap-size
这可以在framework的RequestManager中生成JNLP文件时加入上述参数,但是这些值是要求根据客户机的硬件状态变化的(如客户机的内存大小等)。建议这两个参数值设为客户机可用内存的60%(有待)。为了在动态生成JNLP时以上两个参数值能够随客户机不同而不同,可靠虑获得客户机系统信息并将这些嵌到首页index.jsp中作为连接请求的参数。
在设置了上述参数后可以通过Visualgc 来观察垃圾回收的一些参数状态,再做相应的调整来改善性能。一般的标准是减少fullgc的次数,最好硬件支持使用并行垃圾回收(要求多CPU)。
JVM内存组成结构
JVM栈由堆、栈、本地方法栈、方法区等部分组成,结构图如下所示:
所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区,最后Survivor由From Space和To Space组成,结构图如下所示:
新生代。新建的对象都是用新生代分配内存,Eden空间不足的时候,会把存活的对象转移到Survivor中,新生代大小可以由-Xmn来控制,也可以用-XX:SurvivorRatio来控制Eden和Survivor的比例旧生代。用于存放新生代中经过多次垃圾回收仍然存活的对象2)栈
每个线程执行每个方法的时候都会在栈中申请一个栈帧,每个栈帧包括局部变量区和操作数栈,用于存放此次方法调用过程中的临时变量、参数和中间结果
3)本地方法栈
用于支持native方法的执行,存储了每个native方法调用的状态
存放了要加载的类信息、静态变量、final类型的常量、属性和方法信息。JVM用持久代(Permanet Generation)来存放方法区,可通过-XX:PermSize和-XX:MaxPermSize来指定最小值和最大值
垃圾回收机制
JVM分别对新生代和旧生代采用不同的垃圾回收机制
新生代的GC:
新生代通常存活时间较短,因此基于Copying算法来进行回收,所谓Copying算法就是扫描出存活的对象,并复制到一块新的完全未使用的空间中,对应于新生代,就是在Eden和From Space或To Space之间copy。新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从eden到survivor,最后到旧生代,
用java visualVM来查看,能明显观察到新生代满了后,会把对象转移到旧生代,然后清空继续装载,当旧生代也满了后,就会报outofmemory的异常,如下图所示:
在执行机制上JVM提供了串行GC(Serial GC)、并行回收GC(Parallel Scavenge)和并行GC(ParNew)
在整个扫描和复制过程采用单线程的方式来进行,适用于单CPU、新生代空间较小及对暂停时间要求不是非常高的应用上,是client级别默认的GC方式,可以通过-XX:+UseSerialGC来强制指定
2)并行回收GC
在整个扫描和复制过程采用多线程的方式来进行,适用于多CPU、对暂停时间要求较短的应用上,是server级别默认采用的GC方式,可用-XX:+UseParallelGC来强制指定,用-XX:ParallelGCThreads=4来指定线程数
与旧生代的并发GC配合使用
旧生代的GC:
旧生代与新生代不同,对象存活的时间比较长,比较稳定,因此采用标记(Mark)算法来进行回收,所谓标记就是扫描出存活的对象,然后再进行回收未被标记的对象,回收后对用空出的空间要么进行合并,要么标记出来便于下次进行分配,总之就是要减少内存碎片带来的效率损耗。在执行机制上JVM提供了串行GC(Serial MSC)、并行GC(parallel MSC)和并发GC(CMS),具体算法细节还有待进一步深入研究。
以上各种GC机制是需要组合使用的,指定方式由下表所示:
新生代GC方式
旧生代GC方式
-XX:+UseSerialGC
-XX:+UseParallelGC
并行回收GC
-XX:+UseConeMarkSweepGC
-XX:+UseParNewGC
-XX:+UseParallelOldGC
并行回收GC
-XX:+ UseConeMarkSweepGC
-XX:+UseParNewGC
不支持的组合
1、-XX:+UseParNewGC -XX:+UseParallelOldGC
2、-XX:+UseParNewGC -XX:+UseSerialGC
JVM 内存调优
首先需要注意的是在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。
对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数,过多的GC和Full GC是会占用很多的系统资源(主要是CPU),影响系统的吞吐量。特别要关注Full GC,因为它会对整个堆进行整理,导致Full GC一般由于以下几种情况:
旧生代空间不足
调优时尽量让对象在新生代GC时被回收、让对象在新生代多存活一段时间和不要创建过大的对象及数组避免直接在旧生代创建对象 Pemanet Generation空间不足
增大Perm Gen空间,避免太多静态对象 统计得到的GC后晋升到旧生代的平均大小大于旧生代剩余空间
控制好新生代和旧生代的比例 System.gc()被显示调用
垃圾回收不要手动触发,尽量依靠JVM自身的机制 调优手段主要是通过控制堆内存的各个部分的比例和GC策略来实现,下面来看看各部分比例不良设置会导致什么后果
1)新生代设置过小
一是新生代GC次数非常频繁,增大系统消耗;二是导致大对象直接进入旧生代,占据了旧生代剩余空间,诱发Full GC
2)新生代设置过大
一是新生代设置过大会导致旧生代过小(堆总量一定),从而诱发Full GC;二是新生代GC耗时大幅度增加
一般说来新生代占整个堆1/3比较合适
3)Survivor设置过小
导致对象从eden直接到达旧生代,降低了在新生代的存活时间
4)Survivor设置过大
导致eden过小,增加了GC频率
另外,通过-XX:MaxTenuringThreshold=n来控制新生代存活时间,尽量让对象在新生代被回收
新生代和旧生代都有多种GC策略和组合搭配,选择这些策略对于我们这些开发人员是个难题,JVM提供两种较为简单的GC策略的设置方式
1)吞吐量优先
JVM以吞吐量为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,来达到吞吐量指标。这个值可由-XX:GCTimeRatio=n来设置
2)暂停时间优先
JVM以暂停时间为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,尽量保证每次GC造成的应用停止时间都在指定的数值范围内完成。这个值可由-XX:MaxGCPauseRatio=n来设置
最后汇总一下JVM常见配置
-Xms:初始堆大小-Xmx:最大堆大小-XX:NewSize=n:设置年轻代大小-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5-XX:MaxPermSize=n:设置持久代大小收集器设置
-XX:+UseSerialGC:设置串行收集器-XX:+UseParallelGC:设置并行收集器-XX:+UseParalledlOldGC:设置并行年老代收集器-XX:+UseConcMarkSweepGC:设置并发收集器垃圾回收统计信息
-XX:+PrintGC-XX:+PrintGCDetails-XX:+PrintGCTimeStamps-Xloggc:filename并行收集器设置
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)并发收集器设置
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。附:
本系列学习资料主要来自博文里提到的PPT和《分布式Java应用》里有关JVM的章节,推荐大家继续深入学习
JAVA 堆内存
Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象。
在 Java 中,堆被划分成两个不同的区域:新生代 ( Young )、老年代 ( Old )。新生代 ( Young ) 又被划分为三个区域:Eden、From Survivor、To Survivor。
这样划分的目的是为了使 JVM 能够更好的管理堆内存中的对象,包括内存的分配以及回收。
堆的内存模型大致为:
从图中可以看出: 堆大小 = 新生代 + 老年代。其中,堆的大小可以通过参数 –Xms、-Xmx 来指定。
本人使用的是 JDK1.6,以下涉及的 JVM 默认值均以该版本为准。
默认的,新生代 ( Young ) 与老年代 ( Old ) 的比例的值为 1:2 ( 该值可以通过参数 –XX:NewRatio 来指定 ),即:新生代 ( Young ) = 1/3 的堆空间大小。
老年代 ( Old ) = 2/3 的堆空间大小。其中,新生代 ( Young ) 被细分为 Eden 和 两个 Survivor 区域,这两个 Survivor 区域分别被命名为 from 和 to,以示区分。
默认的,Edem : from : to = 8 : 1 : 1 ( 可以通过参数 –XX:SurvivorRatio 来设定 ),即: Eden = 8/10 的新生代空间大小,from = to = 1/10 的新生代空间大小。
JVM 每次只会使用 Eden 和其中的一块 Survivor 区域来为对象服务,所以无论什么时候,总是有一块 Survivor 区域是空闲着的。
因此,新生代实际可用的内存空间为 9/10 ( 即90% )的新生代空间。
Java 中的堆也是 GC 收集垃圾的主要区域。GC 分为两种:Minor GC、Full GC ( 或称为 Major GC )。
Minor GC 是发生在新生代中的垃圾收集动作,所采用的是复制算法。
新生代几乎是所有 Java 对象出生的地方,即 Java 对象申请的内存以及存放都是在这个地方。Java 中的大部分对象通常不需长久存活,具有朝生夕灭的性质。
当一个对象被判定为 "死亡" 的时候,GC 就有责任来回收掉这部分对象的内存空间。新生代是 GC 收集垃圾的频繁区域。
当对象在 Eden ( 包括一个 Survivor 区域,这里假设是 from 区域 ) 出生后,在经过一次 Minor GC 后,如果对象还存活,并且能够被另外一块 Survivor 区域所容纳
( 上面已经假设为 from 区域,这里应为 to 区域,即 to 区域有足够的内存空间来存储 Eden 和 from 区域中存活的对象 ),则使用复制算法将这些仍然还存活的对象复制到另外一块 Survivor 区域 ( 即 to 区域 ) 中,然后清理所使用过的 Eden 以及 Survivor 区域 ( 即 from 区域 ),并且将这些对象的年龄设置为1,以后对象在 Survivor 区每熬过一次 Minor GC,就将对象的年龄 + 1,当对象的年龄达到某个值时 ( 默认是 15 岁,可以通过参数 -XX:MaxTenuringThreshold
来设定 ),这些对象就会成为老年代。
但这也不是一定的,对于一些较大的对象 ( 即需要分配一块较大的连续内存空间 ) 则是直接进入到老年代。
Full GC 是发生在老年代的垃圾收集动作,所采用的是标记-清除算法。
现实的生活中,老年代的人通常会比新生代的人 "早死"。堆内存中的老年代(Old)不同于这个,老年代里面的对象几乎个个都是在 Survivor 区域中熬过来的,它们是不会那么容易就 "死掉" 了的。因此,Full GC 发生的次数不会有 Minor GC 那么频繁,并且做一次 Full GC 要比进行一次 Minor GC 的时间更长。
另外,标记-清除算法收集垃圾的时候会产生许多的内存碎片 ( 即不连续的内存空间 ),此后需要为较大的对象分配内存空间时,若无法找到足够的连续的内存空间,就会提前触发一次 GC 的收集动作。
public static void main(String[] args) {
Object obj = new Object();
System.gc();
System.out.println();
obj = new Object();
obj = new Object();
System.gc();
System.out.println();
设置 JVM 参数为 -XX:+PrintGCDetails,使得控制台能够显示 GC 相关的日志信息,执行上面代码,下面是其中一次执行的结果。
Full GC 信息与 Minor GC 的信息是相似的,这里就不一个一个的画出来了。
从 Full GC 信息可知,新生代可用的内存大小约为 18M,则新生代实际分配得到的内存空间约为 20M(为什么是 20M? 请继续看下面...)。老年代分得的内存大小约为 42M,堆的可用内存的大小约为 60M。可以计算出: 18432K ( 新生代可用空间 ) + 42112K ( 老年代空间 ) = 60544K ( 堆的可用空间 )
新生代约占堆大小的 1/3,老年代约占堆大小的 2/3。也可以看出,GC 对新生代的回收比较乐观,而对老年代以及方法区的回收并不明显或者说不及新生代。
并且在这里 Full GC 耗时是 Minor GC 的 22.89 倍。
JVM 参数选项
jvm 可配置的参数选项可以参考 Oracle 官方网站给出的相关信息:
下面只列举其中的几个常用和容易掌握的配置选项: -Xms
初始堆大小。如:-Xms256m
最大堆大小。如:-Xmx512m
新生代大小。通常为 Xmx 的 1/3 或 1/4。新生代 = Eden + 2 个 Survivor 空间。实际可用空间为 = Eden + 1 个 Survivor,即 90%
JDK1.5+ 每个线程堆栈大小为 1M,一般来说如果栈不是很深的话, 1M 是绝对够用了的。
-XX:NewRatio
新生代与老年代的比例,如 –XX:NewRatio=2,则新生代占整个堆空间的1/3,老年代占2/3
-XX:SurvivorRatio
新生代中 Eden 与 Survivor 的比值。默认值为 8。即 Eden 占新生代空间的 8/10,另外两个 Survivor 各占 1/10
-XX:PermSize
永久代(方法区)的初始大小
-XX:MaxPermSize
永久代(方法区)的最大值
-XX:+PrintGCDetails
打印 GC 信息
-XX:+HeapDumpOnOutOfMemoryError
让虚拟机在发生内存溢出时 Dump 出当前的内存堆转储快照,以便分析用
-XX:NewRatio=2 ( 若 Xms = Xmx, 并且设定了 Xmn, 那么该项配置就不需要配置了 ) 6
-XX:SurvivorRatio=8 7
-XX:PermSize=30m 8
-XX:MaxPermSize=30m 9
-XX:+PrintGCDetails10
*/11 public static void main(String[] args) {12
new Test().doTest();13 }14 15 public void doTest(){16
Integer M =
new Integer(1024 * 1024 * 1);
//单位, 兆(M)17
byte[] bytes = new byte[1 * M]; //申请 1M 大小的内存空间18
bytes = null;
//断开引用链19
System.gc();
//通知 GC 收集垃圾20
System.out.println();21
bytes = new byte[1 * M];
//重新申请 1M 大小的内存空间22
bytes = new byte[1 * M];
//再次申请 1M 大小的内存空间23
System.gc();24
System.out.println();25 }
按上面代码中注释的信息设定 jvm 相关的参数项,并执行程序,下面是一次执行完成控制台打印的结果:
[ GC [ PSYoungGen:
1351K -& 288K (18432K) ]
1351K -& 288K (59392K), 0.0012389 secs ]
[ Times: user=0.00 sys=0.00, real=0.00 secs ]
[ Full GC (System)
[ PSYoungGen:
288K -& 0K (18432K) ]
[ PSOldGen:
0K -& 160K (40960K) ]
288K -& 160K (59392K)
[ PSPermGen:
2942K -& 2942K (30720K) ],
0.0057649 secs ] [ Times:
real=0.01 secs ]
[ GC [ PSYoungGen:
2703K -& 1056K (18432K) ]
2863K -& K),
0.0008206 secs ]
[ Times: user=0.00 sys=0.00, real=0.00 secs ]
[ Full GC (System)
[ PSYoungGen:
1056K -& 0K (18432K) ]
[ PSOldGen:
160K -& 1184K (40960K) ]
1216K -& 1184K (59392K)
[ PSPermGen:
2951K -& 2951K (30720K) ], 0.0052445 secs ]
[ Times: user=0.02 sys=0.00, real=0.01 secs ]
PSYoungGen
total 18432K, used 327K [0xfec00, 0x0000)
eden space 16384K, 2% used [0xfec00000fec51f58,0xffc00000)
from space 2048K, 0% used [0xffe00000ffe0)
space 2048K, 0% used [0xffc00000ffc00000ffe00000)
total 40960K, used 1184K [0x00000fec000000fec00000)
object space 40960K, 2% used [0x0f8,0xfec00000)
total 30720K, used 2959K [0x0, 0x0000)
object space 30720K, 9% used [0x0ce0,0x0000)
从打印结果可以看出,堆中新生代的内存空间为 18432K ( 约 18M ),eden 的内存空间为 16384K ( 约 16M),from / to survivor 的内存空间为 2048K ( 约 2M)。
这里所配置的 Xmn 为 20M,也就是指定了新生代的内存空间为 20M,可是从打印的堆信息来看,新生代怎么就只有 18M 呢? 另外的 2M 哪里去了?
别急,是这样的。新生代 = eden + from + to = 16 + 2 + 2 = 20M,可见新生代的内存空间确实是按 Xmn 参数分配得到的。
而且这里指定了 SurvivorRatio = 8,因此,eden = 8/10 的新生代空间 = 8/10 * 20 = 16M。from = to = 1/10 的新生代空间 = 1/10 * 20 = 2M。
堆信息中新生代的 total 18432K 是这样来的: eden + 1 个 survivor = 16384K + 2048K = 18432K,即约为 18M。
因为 jvm 每次只是用新生代中的 eden 和 一个 survivor,因此新生代实际的可用内存空间大小为所指定的 90%。
因此可以知道,这里新生代的内存空间指的是新生代可用的总的内存空间,而不是指整个新生代的空间大小。
另外,可以看出老年代的内存空间为 40960K ( 约 40M ),堆大小 = 新生代 + 老年代。因此在这里,老年代 = 堆大小 - 新生代 = 60 - 20 = 40M。
最后,这里还指定了 PermSize = 30m,PermGen 即永久代 ( 方法区 ),它还有一个名字,叫非堆,主要用来存储由 jvm 加载的类文件信息、常量、静态变量等。
打个盹,回到 doTest() 方法中,可以看到代码在第 17、21、22 这三行中分别申请了一块 1M 大小的内存空间,并在 19 和 23 这两行中分别显式的调用了 System.gc()。从控制台打印的信息来看,每次调 System.gc(),是先进行 Minor GC,然后再进行 Full GC。第 19 行触发的 Minor GC 收集分析:
从信息 PSYoungGen :
1351K -& 288K,可以知道,在第 17 行为 bytes 分配的内存空间已经被回收完成。
引起 GC 回收这 1M 内存空间的因素是第 18 行的 bytes =
bytes 为 null 表明之前申请的那 1M 大小的内存空间现在已经没有任何引用变量在使用它了,
并且在内存中它处于一种不可到达状态 ( 即没有任何引用链与 GC Roots 相连 )。那么,当 Minor GC 发生的时候,GC 就会来回收掉这部分的内存空间。第 19 行触发的 Full GC 收集分析:
在 Minor GC 的时候,信息显示 PSYoungGen :
1351K -& 288K,再看看 Full GC 中显示的 PSYoungGen :
288K -& 0K,可以看出,Full GC 后,新生代的内存使用变成
0K 了 ( 0K,零 K,有没有人看成是英文的 OK 的 ? 好吧。我承认我第一次看的时候以为是英文的 OK,当时还特意在控制台打印 0K 和 OK 来确认。最后发现英文的 O 长得比阿拉伯数字的 0 要丰满和胖一些。现在印象还是比较深刻的。好像。。我跑题了 ~~ )
刚刚说到 Full GC 后,新生代的内存使用从 288K 变成 0K 了,那么这 288K 到底哪去了 ? 难道都被 GC 当成垃圾回收掉了 ? 当然不是了。我还特意在 main 方法中 new 了一个 Test 类的实例,这里的 Test 类的实例属于小对象,它应该被分配到新生代内存当中,现在还在调用这个实例的 doTest 方法呢,GC 不可能在这个时候来回收它的。
接着往下看 Full GC 的信息,会发现一个很有趣的现象,PSOldGen:
-& 160K,可以看到,Full GC 后,老年代的内存使用从 0K 变成了 160K,想必你已经猜到大概是怎么回事了。当 Full GC 进行的时候,默认的方式是尽量清空新生代 ( YoungGen ),因此在调 System.gc() 时,新生代 ( YoungGen ) 中存活的对象会提前进入老年代。第 23 行触发的 Minor GC 收集分析:
从信息 PSYoungGen :
2703K -& 1056K,可以知道,在第 21 行创建的,大小为 1M 的数组被 GC 回收了。在第 22 行创建的,大小也为 1M 的数组由于 bytes 引用变量还在引用它,因此,它暂时未被 GC 回收。 第 23 行触发的 Full GC 收集分析:
在 Minor GC 的时候,信息显示 PSYoungGen :
2703K -& 1056K,Full GC 中显示的 PSYoungGen :
1056K -& 0K,以及 PSOldGen:
160K -& 1184K,可以知道,新生代 ( YoungGen ) 中存活的对象又提前进入老年代了。
看过本文的人也看了:
我要留言技术领域:
取消收藏确定要取消收藏吗?
删除图谱提示你保存在该图谱下的知识内容也会被删除,建议你先将内容移到其他图谱中。你确定要删除知识图谱及其内容吗?
删除节点提示无法删除该知识节点,因该节点下仍保存有相关知识内容!
删除节点提示你确定要删除该知识节点吗?}

我要回帖

更多关于 lte景区场景优化 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信