苹果x质量真的很差吗7真心质量太差了,轻轻稍微摔一下就出现大问题,1.芯片损坏。2.CPU损坏。真心不懂质量差还上市!同情

苹果7摔了下不开机可以维修吗_百度知道
苹果7摔了下不开机可以维修吗
我有更好的答案
苹果7/7plus不开机有不同的原因引起,不同原因‌‌引起的解决办法不一样一、系统问题有时候我们在使用过程中,手机会突然关机,充电和按开机键均不管用,可以尝试以下解决办法:1、强制重启:同时按住开关机键+音量减键20秒左右(关机键+home键是7代之前才有用,7代必须按音量减键)2、如果强制重启不管用,可以尝试通过itunes刷机(一般没问题是可以刷机通过,有问题的刷机会报错,可以通过报错大致判断问题所在)二、电池过度放电这种情况一般是手机长时间未用未充电或是手机电池电量用完自动关机,过度放电并不是一充电就可以开机,需要充电一段时间后等电量达到一定程度后才可开机三、硬件损坏(电池、尾插)等电池或尾插损坏会导致手机没电无法开机,检测确定后更换相应配件即可四、主板问题这种一般是摔、进水、充电等造成,多数是主板问题。苹果7/plus虽说有抗水功能,但这并不是说可以完全防水,日常使用磨损都会导致抗水功能下降或失效。主板维修对技术要求高,很多不懂主板维修的维修店都会说主板烧了要换个主板,要几千元,其实很多都是可以维修的,完全没必要花这个冤枉钱。1、如果是主板芯片损坏,就需要更换芯片(大多数芯片是可以单独更换的,除了一些加密的芯片)2、如果是主板断线了,就需要接线。找专业的手机维修网点,应该都能解决的。
采纳率:81%
来自团队:
当然是可以的
iPhone7就开不了怎么办,首先给iphone充电,然后按下电源键看有没开机反应 如果无开机反应,一般分为以下几种原因: 1、系统软件和APP软件发生冲突导致。2、APP内存占用过多,内存所剩不多。3、磕碰摔、进水或者曾经的故障维修不够彻底造成隐患。4、第一二种可以尝试重启,同时按下home键+音量减键,直到出现苹果图标后松手。5、如果重启无法解锁,尝试刷机(资料会丢失)。6、如果需要在不丢失资料的情况下恢复系统,只能通过加电检测。一般如果iPhone磕碰摔、进水 或 使用不当,容易导致屏幕黑屏、主板电源芯片、cpu、显示芯片、硬盘、板层线路等硬件的虚焊、损坏、短路等,导致电流恒定值异常,最终会出现黑屏、死机、频繁自动重启和无法开机等多种问题。这些情况是需要通过主板芯片移植技术修复的。 由于主板上有上万个芯片,要确定哪个芯片的故障,需要通过测试主板恒定电流值来判定,具体操作步骤是:1、通过检测主板上电流值是否偏大,如果偏大证明主板上某个或者某些元件短路造成。2、采取薰松香法检测哪个元件温度过高,温度过高的元件会冒出一层白雾,即是短路元件。 3、确定具体短路的元件后,通过移值和焊接技术换新短路元件。4、再次按下电源键开机看是否开机正常,如果正常,则问题解决,若不正常还得重新以上步骤
1条折叠回答
为您推荐:
其他类似问题
您可能关注的内容
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。500 Internal Server Error
500 Internal Server Error天极传媒:天极网全国分站
您现在的位置:
& >>又是第一名 iPhoneX成最容易摔烂手机
又是第一名 iPhone X成最容易摔烂的手机
天极网手机频道
作者:黑子可可
责编:刘炜博
  【天极网手机频道】光从9688的价格上,就可以感受 X这部真心不便宜。但是所谓物有所值,业界权威机构displaymate认为iPhone X的屏幕世界第一,加之处理器的优秀性能同样证明了iPhone X是如今最出色的手机。但由于这部手机采用了特殊工艺和全新设计,是损坏程度上也堪称第一。
  手机维修公司SquareTrade为iPhone X 进行了跌落,每一次测试都将蓝菲一台全 X。在跌落测试中,他们发现iPhone X一次落地就会让OLED失灵、要不就是Face ID不能再用于、大概率情况是屏幕损坏。而在之后的背面落下测试中,只经过一回合,iPhone X的背面玻璃100%破裂,边框也会磨花。(本次的跌落测试高度为1.8米)
  而在随后的翻滚机测试中,在一个四方的木箱内翻滚,手机拿出后发现两边破璃都出现破裂,Face ID 未能正常运作,无法拉上荧幕返回主画面。SquareTrade 在进行各种测试后,为iPhone X打分90分,分数越高代表风险越大。他们形容iPhone X是最容易跌坏且价格昂贵,修理也是最费钱的iPhone。作为现市场最有调性的手机,如果你没有买苹果AppleCare+,那可要好好保护iPhone X的屏幕了,其维修成本十分高昂,iPhone X屏幕保外维修2288元,这价格已经可以卖一部备用手机了。
(作者:黑子可可责任编辑:刘炜博)
天极新媒体&最酷科技资讯扫码赢大奖
* 网友发言均非本站立场,本站不在评论栏推荐任何网店、经销商,谨防上当受骗!
屏幕尺寸:5.8英寸
CPU型号:苹果A11+M11协处理器
4G制式:移动联通电信全网通(TD-LTE/FDD-LTE)
处理器核心:六核
操作系统版本:iOS 11
RAM容量:3GB
ROM容量:64GB
电池容量(mAh):2716mAh
后置摄像头:双1200万
前置摄像头:700万
指纹识别:支持
网上商城商品/规格/促销价格
整机数码游戏软件芯片释意/芯片
英语释意A silicon chip is a very small piece of silicon with electronic circuits on it which is part of a computer or other piece of machinery.芯片(chip)就是半导体元件产品的统称。是集成电路(IC, integrated circuit)的载体,由晶圆分割而成。是一块很小的硅,内含集成电路,它是计算机或者其他的一部分 。IC就是,泛指所有的电子元器件,是在硅板上集合多种电子元器件实现某种特定功能的电路模块。它是电子设备中最重要的部分,承担着运算和的功能。集成电路的应用范围复盖了军工、民用的几乎所有的电子设备。
与IC的关系/芯片
芯片,英文为Chip;芯片组为Chipset。芯片一般是指集成电路的载体,也是集成电路经过设计、制造、封装、测试后的结果,通常是一个可以立即使用的独立的整体。“芯片”和“集成电路”这两个词经常混着使用,比如在大家平常讨论话题中,集成电路设计和芯片设计说的是一个意思,芯片行业、集成电路行业、IC行业往往也是一个意思。实际上,这两个词有联系,也有区别。集成电路实体往往要以芯片的形式存在,因为狭义的集成电路,是强调本身,比如简单到只有五个元件连接在一起形成的相移振荡器,当它还在图纸上呈现的时候,我们也可以叫它集成电路,当我们要拿这个小集成电路来应用的时候,那它必须以独立的一块实物,或者嵌入到更大的集成电路中,依托芯片来发挥他的作用;集成电路更着重电路的设计和布局布线,芯片更强调电路的集成、生产和封装。而广义的集成电路,当涉及到行业(区别于其他行业)时,也可以包含芯片相关的各种含义。芯片与集成电路芯片也有它独特的地方,广义上,只要是使用微细加工手段制造出来的半导体片子,都可以叫做芯片,里面并不一定有电路。比如半导体光源芯片;比如机械芯片,如MEMS陀螺仪;或者生物芯片如DNA芯片。在通讯与信息技术中,当把范围局限到硅集成电路时,芯片和集成电路的交集就是在“硅晶片上的电路”上。芯片组,则是一系列相互关联的芯片组合,它们相互依赖,组合在一起能发挥更大的作用,比如计算机里面的处理器和南北桥芯片组,手机里面的射频、基带和电源管理芯片组。电脑芯片如果把CPU比喻为整个电脑系统的心脏,那么主板上的芯片组就是整个身体的躯干。对于主板而言,芯片组几乎决定了这块主板的功能,进而影响到整个电脑系统性能的发挥,芯片组是主板的灵魂。主板芯片的功能及工作原理芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片。北桥芯片提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持。南桥芯片则提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、Ultra DMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持。其中北桥芯片起着主导性的作用,也称为主桥(Host Bridge)。芯片组的识别也非常容易,以Intel440BX芯片组为例,它的北桥芯片是Intel 82443BX芯片,通常在主板上靠近CPU插槽的位置,由于芯片的发热量较高,在这块芯片上装有散热片。南桥芯片在靠近ISA和PCI槽的位置,芯片的名称为Intel 82371EB。其他芯片组的排列位置基本相同。对于不同的芯片组,在性能上的表现也存在差距。芯片组除了最通用的南北桥结构外,芯片组正向更高级的加速集线架构发展,Intel的8xx系列芯片组就是这类芯片组的代表,它将一些子系统如IDE接口、音效、MODEM和USB直接接入主芯片,能够提供比PCI总线宽一倍的带宽,达到了266MB/s;此外,矽统科技的SiS635/SiS735也是这类芯片组的新军。除支持最新的DDR266,DDR200和PC133 SDRAM等规格外,还支持四倍速AGP显示卡接口及Fast Write功能、IDE ATA33/66/100,并内建了3D立体音效、高速数据传输功能包含56K数据通讯(Modem)、高速以太网络传输(Fast Ethernet)、1M/10M家庭网络(Home PNA)等。
晶体管发明并大量生产之后,各式固态半导体组件如二极管、晶体管等大量使用,取代了真空管在电路中的功能与角色。到了20世纪中后期半导体制造技术进步,使得集成电路成为可能。相对于手工组装电路使用个别的分立电子组件,集成电路可以把很大数量的微晶体管集成到一个小芯片,是一个巨大的进步。集成电路的规模生产能力,可靠性,电路设计的模块化方法确保了快速采用标准化IC 代替了设计使用离散晶体管。IC 对于离散晶体管有两个主要优势:成本和性能。成本低是由于芯片把所有的组件通过照相平版技术,作为一个单位印刷,而不是在一个时间只制作一个晶体管。性能高是由于组件快速开关,消耗更低能量,因为组件很小且彼此靠近。2006年,芯片面积从几平方毫米到350 mm?,每mm?可以达到一百万个晶体管。第一个集成电路雏形是由杰克·基尔比于1958年完成的,其中包括一个双极性晶体管,三个电阻和一个电容器。根据一个芯片上集成的微电子器件的数量,集成电路可以分为以下几类:小规模集成电路SSI 英文全名为 Small Scale Integration, 逻辑门10个以下 或 晶体管 100个以下。中规模集成电路MSI 英文全名为 Medium Scale Integration, 逻辑门11~100个 或 晶体管 101~1k个。大规模集成电路LSI 英文全名为 Large Scale Integration, 逻辑门101~1k个 或 晶体管 1,001~10k个。超大规模集成电路VLSI 英文全名为 Very large scale integration, 逻辑门1,001~10k个 或 晶体管 10,001~100k个。甚大规模集成电路ULSI 英文全名为 Ultra Large Scale Integration, 逻辑门10,001~1M个 或 晶体管 100,001~10M个。GLSI 英文全名为 Giga Scale Integration, 逻辑门1,000,001个以上 或 晶体管10,000,001个以上。而根据处理信号的不同,可以分为模拟集成电路、数字集成电路、和兼具模拟与数字的混合信号集成电路。
最先进的集成电路是微处理器或多核处理器的"核心(cores)",可以控制电脑到手机到数字微波炉的一切。存储器和ASIC是其他集成电路家族的例子,对于现代信息社会非常重要。虽然设计开发一个复杂集成电路的成本非常高,但是当分散到通常以百万计的产品上,每个IC的成本最小化。IC的性能很高,因为小尺寸带来短路径,使得低功率逻辑电路可以在快速开关速度应用。这些年来,IC 持续向更小的外型尺寸发展,使得每个芯片可以封装更多的电路。这样增加了每单位面积容量,可以降低成本和增加功能-见摩尔定律,集成电路中的晶体管数量,每两年增加一倍。总之,随着外形尺寸缩小,几乎所有的指标改善了-单位成本和开关功率消耗下降,速度提高。但是,集成纳米级别设备的IC不是没有问题,主要是泄漏电流(leakage current)。因此,对于最终用户的速度和功率消耗增加非常明显,制造商面临使用更好几何学的尖锐挑战。这个过程和在未来几年所期望的进步,在半导体国际技术路线图(ITRS)中有很好的描述。越来越多的电路以集成芯片的方式出现在设计师手里,使电子电路的开发趋向于小型化、高速化。越来越多的应用已经由复杂的模拟电路转化为简单的数字逻辑集成电路。
芯片制作完整过程包括芯片设计、晶片制作、封装制作、成本测试等几个环节,其中晶片制作过程尤为的复杂。精密的芯片其制造过程非常的复杂&首先是芯片设计,根据设计的需求,生成的“图样”1、&芯片的原料晶圆晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将这些纯硅制成硅晶棒,成为制造集成电路的石英半导体的材料,将其切片就是芯片制作具体所需要的晶圆。晶圆越薄,生产的成本越低,但对工艺就要求的越高。2、晶圆涂膜晶圆涂膜能抵抗氧化以及耐温能力,其材料为光阻的一种。3、晶圆光刻显影、蚀刻该过程使用了对紫外光敏感的化学物质,即遇紫外光则变软。通过控制遮光物的位置可以得到芯片的外形。在硅晶片涂上光致抗蚀剂,使得其遇紫外光就会溶解。这时可以用上第一份遮光物,使得紫外光直射的部分被溶解,这溶解部分接着可用溶剂将其冲走。这样剩下的部分就与遮光物的形状一样了,而这效果正是我们所要的。这样就得到我们所需要的二氧化硅层。4、掺加杂质将晶圆中植入离子,生成相应的P、N类半导体。具体工艺是是从硅片上暴露的区域开始,放入化学离子混合液中。这一工艺将改变搀杂区的导电方式,使每个晶体管可以通、断、或携带数据。简单的芯片可以只用一层,但复杂的芯片通常有很多层,这时候将这一流程不断的重复,不同层可通过开启窗口联接起来。这一点类似多层PCB板的制作原理。&更为复杂的芯片可能需要多个二氧化硅层,这时候通过重复光刻以及上面流程来实现,形成一个立体的结构。5、晶圆测试经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。6、封装将制造完成晶圆固定,绑定引脚,按照需求去制作成各种不同的封装形式,这就是同种芯片内核可以有不同的封装形式的原因。比如:DIP、QFP、PLCC、QFN等等。这里主要是由用户的应用习惯、应用环境、市场形式等外围因素来决定的。7、测试、包装经过上述工艺流程以后,芯片制作就已经全部完成了,这一步骤是将芯片进行测试、剔除不良品,以及包装。
计算机芯片如果把中央处理器CPU比喻为整个电脑系统的心脏,那么主板上的芯片组就是整个身体的躯干。对于主板而言,芯片组几乎决定了这块主板的功能,进而影响到整个电脑系统性能的发挥,芯片组是主板的灵魂。芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片。北桥芯片提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持。南桥芯片则提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、Ultra DMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持。其中北桥芯片起着主导性的作用,也称为主桥(Host Bridge)。生物芯片与PCR技术一样,芯片技术已经开展和将要开展的应用领域非常的广泛。生物芯片的第一个应用领域是检测基因表达。但是将生物分子有序地放在芯片上检测生化标本的策略是具有广泛的应用领域,除了基因表达分析外,杂交为基础的分析已用于基因突变的检测、多态性分析、基因作图、进化研究和其它方面的应用,微阵列分析还可用于检测蛋白质与核酸、小分子物质及与其它蛋白质的结合,但这些领域的应用仍待发展。对基因组DNA进行杂交分析可以检测DNA编码区和非编码区单个碱基改变、确失和插入,DNA杂交分析还可用于对DNA进行定量,这对检测基因拷贝数和染色体的倍性是很重要的。人脑芯片几十年来,科学家一直“训练”电脑,使其能够像人脑一样思考。这种挑战考验着科学的极限。IBM公司的研究人员18日表示,在将电脑与人脑结合在一起的研究道路上,他们取得了一项重大进展。这家美国科技公司研制出两个芯片原型,与此前的PC和超级计算机采用的芯片相比,这些芯片处理数据的方式与人脑处理信息的方式更为接近。这两个芯片是一项为期6年的项目取得的一项具有里程碑意义的重大成就。共有100名研究人员参与这一项目,美国政府的国防高级研究计划局(DARPA)提供了4100万美元资金。IBM的投资数额并未对外公布。两个芯片原型提供了进一步证据,证明“平行处理”日益提高的重要性。平行处理具体是指电脑同时处理多个任务。多任务处理对渲染图片和处理大量数据非常重要。迄今为止,这两个芯片仅用于处理一些非常简单的任务,例如操控一辆仿真车穿过迷宫或者玩《Pong》。它们最终走出实验室并应用于实际产品可能需要10年或者更长时间。日前,由瑞士、德国和美国的科学家组成的研究小组首次成功研发出一种新奇的微芯片,能够实时模拟人类大脑处理信息的过程。这项新成果将有助于科学家们制造出能同周围环境实时交互的认知系统,为神经网络计算机和高智能机器人的研制提供强有力的技术支撑。芯片以前的类似研究都局限于在传统计算机上研制神经网络模型或在超级计算机上模拟复杂的神经网络,而新研究的思路是:研发在大小、处理速度和能耗方面都可与真实大脑相媲美的电路。研究小组成员基尔克莫·因迪韦里表示:“我们的目标是直接在微芯片上模拟生物神经元和突触的属性。”做到这一点面临的主要挑战,是配置由人造神经元组成的网络,让其能执行特定的任务。研究小组现在已经成功地攻克了这一“碉堡”,他们研发出一种被称为“神经形态芯片”(neuromorphic chips)的装置,能够实时执行复杂的感觉运动任务,并借助这一装置,演示了一个需要短期记忆力和依赖语境的决策能力的任务,这是认知测试所必需的典型特征。研究小组把神经形态神经元与利用神经处理模块——相当于所谓“有限自动机”的网络相结合。有限自动机是一个用来描述逻辑过程和计算机程序的数学概念。行为可以表示为有限自动机,由此以自动化的方式转给神经形态硬件。因迪韦里说:“网络连接模式非常类似于在大脑中发现的结构。”芯片由于神经形态芯片可以实时处理输入的信息并作出回应,有关专家认为这项技术将有望走向实用化,从而允许机器人在复杂环境中,在不受人类远程遥控的情况下实现自动作业。这项技术的采用还将有望在未来让计算机能够在有部件损坏的情况下继续运作,就像人类的大脑那样,每天损失数以百万计的脑细胞,但是其整体的思维能力却仍然继续正常运转。欧盟、美国和瑞士目前正在紧锣密鼓地研制模拟大脑处理信息的神经网络计算机,希望通过模拟生物神经元复制人工智能系统。这种新型计算机的“大脑芯片”迥异于传统计算机的“大脑芯片”。它能运用类似人脑的神经计算法,低能耗和容错性强是其最大优点,较之传统数字计算机,它的智能性会更强,在认知学习、自动组织、对模糊信息的综合处理等方面也将前进一大步。不过也有人表示了担忧:装上这种芯片的机器人将来是否会在智能上超越人类,甚至会对人类造成威胁?不少科学家认为,这类担心是完全没有必要的。就智能而言,目前机器人的智商相当于4岁儿童的智商,而机器人的“常识”比起正常成年人就差得更远了。美国科学家罗伯特·斯隆日前说:“我们距离能够以8岁儿童的能力回答复杂问题的、具有常识的人工智能程序仍然很遥远。”日本科学家广濑茂男也认为:即使机器人将来具有常识并能进行自我复制,也不可能对人类造成威胁。值得一提的是,中国科学家周海中在1990年发表的《论机器人》一文中指出:机器人并非无所不能;它在工作强度、运算速度和记忆功能方面可以超越人类,但在意识、推理等方面不可能超越人类。另外,机器人会越来越“聪明”,但只能按照制定的原则纲领行动,服务人类、造福人类。其他芯片调制与侦测器技术突破,硅光子芯片互连应用指日可待。高速光通信在过去30几年来的发展下,已经成为有线高速信息传输的标准。在2000年受到美国经济泡沫化及网络市场对带宽需求不如预期的影响下,光通信产业与客户端的拓展曾经沉寂一段时间。过去除政府单位或具大型网络建置的企业外,一般终端使用者直接享受高比特率传输的机会并不高。虽然目前高速光通信应用的领域仍以远距离的骨干网络服务为主,但根据目前主流产学论坛的评估,个人客户端传输比特率将在2015年与2023年分别提升至1Gbit/s与10Gbit/s。
半导体公司/芯片
芯片德州仪器/TI意法半导体/ST飞利浦半导体/PHILIPS恩智浦半导体/NXP安森美半导体/ON国际整流器公司/IR美国国家半导体公司/NS美国模拟器件公司/ADI飞思卡尔/FREESCALE美国爱特梅尔/ATMEL赛普拉斯/CYPRESS达拉斯/DALLAS美信半导体/MAXIM
制备使用/芯片
芯片制备芯片生物芯片的制备主要依赖于微细加工、自动化及化学合成技术。根据不同的使用要求,可以采用微加工技术在芯片的基底材料上加工出各种微细结构,然后再施加必要的生物化学物质并进行表面处理。而更为简单的芯片制备如DNA芯片的制备,则是在基底上利用自动化或化学合成方法直接施加或合成必要的生物化学物质,对基底材料并不做任何微细加工。通常比较典型的DNA芯片制备方法有4种。第1种是Affymetrix公司开发的光引导原位合成法。该方法是微加工技术中光刻工艺与光化学合成法相结合的产物。第2种方法是Incyte Pharmaceutical公司采用的化学喷射法。该方法是将合成好的寡核苷酸探针定点喷射到芯片上并加以固定化来制作DNA芯片。第3种方法是斯坦福大学研制的接触式点涂法,在DNA芯片制备中通过高速精密机械手的精确移动让移液头与玻璃芯片接触而将DNA探针涂敷在芯片上。第4种方法是通过使用4支分别装有A,T,G,C核苷的压电喷头在芯片上并行合成出DNA探针。不管何种方法,目的都是希望能快速、准确地将探针放置到芯片上的指定位置上。核酸样品分离和纯化核酸样品并不是一件容易的工作,它包括了细胞分离、破胞、脱蛋白、提取DNA等多方面的工作.在细胞分离方法上较突出的有过滤分离(如宾夕法尼亚大学研究小组开发的横坝式过滤芯片)和介电电泳分离(利用施加在芯片上的高频非均匀电场在不同的细胞内诱导出偶电极,导致细胞受不同的介电力作用,从而把它们从样品中分离出来)等。生化反应芯片因为所用检测仪器的灵敏度还不够高,因此从血液或活体组织中提取的DNA在标记和应用前都需要扩增复制.例如,在对一个肿瘤的活体解剖样品进行检测时,需要在几千个正常基因中找到一个异常的癌基因,很显然这需要对样品DNA进行必要和特有的复制才易于检测。芯片中的核酸扩增研究已有了很大的进展,在芯片中进行PCR获得成功的有宾夕法尼亚大学研究小组、美国加州Lawrence Livermore国家实验室、Perkin-Elmer公司和伦敦帝国理工大学。宾夕法尼亚大学研究小组所做的扩增反应是在硅-玻璃芯片中进行的,芯片的外部加热和冷却采用的是计算机控制的Peltier电热器。他们成功地在硅-玻璃芯片中完成了一系列不同的核酸扩增反应,例如RT-PCR,LCR,多重PCR和DOP-PCR.Lawrence Livermore国家实验室加工的硅芯片采用了芯片内置式薄膜多晶硅加热套,使其升降温的速度可以得到极大的提高。Perkin-Elmer公司的PCR反应则是在塑料芯片上完成的.伦敦帝国理工大学Manz领导的研究小组研制了一种样品可在不同温度的恒温区间内连续流动的PCR芯片。PCR的不足普通的PCR有一定的不足之处,如难以实现多重扩增以及在PCR过程中存在竞争等.Mosaic Technologies公司的研究人员研究出了固相PCR系统,他们将两个引物固化在丙烯酰胺薄膜上,并让其与DNA模板和PCR试剂接触,这样便可在固相表面进行PCR反应。扩增时所合成的DNA会在引物间形成桥,从而避免了竞争问题.该系统还处于研究阶段。在核酸样品制备中另一个革新的方法是Lynx Therapeutics公司研究的大规模并行固相克隆,该方法可以同时在样品中克隆出成百上千个单独的DNA片段。检测方法常用的芯片检测方法有芯片毛细管电泳分离检测和亲和结合分析。芯片毛细管电泳是1983年由Dupont公司的Pace开发出来的.随后,瑞士的Ciba Geigy公司和加拿大的Alberta大学合作利用玻璃芯片毛细管电泳完成了对寡核苷酸的分离。首次用芯片毛细管阵列电泳检测DNA突变和对DNA进行测序工作的是由加利福尼亚大学伯克利分校Mathies领导的研究小组完成的。通过在芯片上加上高压直流电,他们在近2 min的时间内便完成了从118~1 353 bp的多条DNA片段的快速分离。宾夕法尼亚大学Wilding的小组与Ramsey的小组一道用芯片毛细管电泳对芯片中通过多重扩增得到的用于Duchenne-Becker肌萎缩诊断的若干DNA片段进行分离也获得了成功。其他用芯片毛细管电泳检测突变的外国公司和学术机构有Perkin-Elmer公司、Caliper Technologies公司、Aclara Biosciences公司和麻省理工学院等。亲和结合对DNA芯片而言,亲和结合分析主要是通过核酸之间的杂交结合来进行的.杂交的复杂程度取决于芯片上探针的长度和被测DNA片段的长度以及DNA二级结构的稳定度。利用杂交可进行杂交重复测序、DNA突变检测和基因表达分析。杂交重复测序的过程是:将含有与探针序列互补的单链DNA与其他DNA的混合物置于芯片上,固化的探针就会通过与其序列互补的DNA片段杂交而将其从很复杂的混合样品中识别出来,通过使用带有计算机的荧光检测系统对芯片上检测出来的DNA样品所发出的荧光强弱及各探针的已知序列进行分析、对照和组合就可以得知样品DNA所含的碱基序列。1996年Science对应用芯片杂交技术进行杂交重复测序作了报道,Chee等人在一块固化有135 000个寡聚核苷酸探针(每个探针长度为25个核苷)的硅芯片上对长度为16.6 kb的整个人线粒体DNA进行了序列测定。每组探针之间的间隔为35 μm,重复测序精度为99%;此外通过对11个非洲人个体样品斑点进行分析,他们发现在这些样品中的线粒体DNA中所存在的突变多态性达505个.用生物芯片从事杂交测序的美国公司现有Affymetrix和Hyseq两家,Affymetrix还开发了一套系统(gene chip bioinformation system),将芯片测序与生物信息学联系在一起,测序结果直接进入数据库做下一步的分析。利用杂交分析DNA的一个重要应用是进行DNA突变检测,例如Hacia等人采用由96 000个寡核苷酸探针所组成的杂交芯片,完成了对遗传性乳腺癌和卵巢肿瘤基因BRCA1中外显子上的24个异合突变点(单核苷突变多态性)的检测.他们通过引入参照信号和被检测信号之间的色差分析使得杂交的特异性和检测灵敏度获得了提高。用生物芯片做杂交突变检测的美国公司有Beckman,Abbot Laboratory,Affymetrix,Nanogen,Sarnoff,Genometrix,Vysis,Hyseq,Molecular Dynamics等;英美学术机构有宾夕法尼亚大学,牛津大学,Naval Research,Whitehead Institute for Biomedical Research,Argonne国家实验室等.利用芯片杂交对基因表达进行分析研究是DNA芯片的另一个主要用途。一般来说,对基因表达进行研究需要相对较长的杂交时间,不需要准确地测序,而主要是了解基因中独特的Motifs结构.基因表达的分析研究给疾病诊断和药物筛选带来了巨大的冲击。Lockhart等人采用固化有65 000个不同序列探针(长度为20个核苷)的芯片,定量地分析了一个小鼠T细胞中整个RNA群体中21个各不相同的信使RNA,这些专门设计的探针能与114个已知的小鼠基因杂交.分析结果发现,在诱发细胞分裂后另外20个信使RNA的表达也发生了改变。检测结果表明该系统对RNA的检出率为1:300 000,对信使RNA的定量基准为1:300.DeRisi等人将一个恶性肿瘤细胞线中得到的1 161个不同的cDNA探针通过机械手“刷印”到载玻片上以观察癌基因的表达情况。在比较两个标有不同荧光标记的细胞信使RNA群的杂交结果之后,他们对引入正常人染色体后肿瘤基因受到抑制的细胞中的基因表达结果进行了分析.微阵列芯片不仅在基因分析上获得成功,研究人员更是将该技术与其他相关领域相结合,使得微阵列技术的应用更加广泛。结果对基因芯片的制作者和用户来说,在芯片上从事杂交所获得的结果并不是很完美的,存在着一些问题。首先,阵列上的杂交不是一个简单的液相反应,而是液-固反应,使得DNA链并不能在完全游离的情况下自然地杂交结合在一起;而且DNA的二级结构也会导致失真的杂交结果(链内杂交问题).针对后一个问题,人们又研究出通过使用peptide nucleic acids(PNA)探针来解决链内杂交问题的新方案。在PNA-DNA杂交过程中,用PNA制作的探针比用DNA作的探针更容易接近DNA的目标序列.相比之下,PNA-DNA杂交结构比DNA-DNA杂交结构更稳定,所以对错配也就更易检测。让DNA在芯片表面富集是提高在芯片上DNA并行杂交速度的一个措施之一.Nanogen公司所开发的主动式电子生物芯片,可以使被检测的DNA/RNA分子以很快的速度接近被固化的DNA探针,从而使杂交速度得到极大的提高。信息采集芯片大多数的DNA芯片分析采用的是荧光检测.荧光检测重复性好是研究人员广泛使用的一种方法。除此之外,还有飞行时间质谱仪、光波导、二极管阵列检测、直接电量变化检测等.例如,美国Sequenom公司采用光敏连接技术,将探针通过光敏基团连接在芯片上。当杂交结束后,利用激光切割释放寡聚核苷酸并用飞行时间质谱仪进行检测.该公司只能对较短的DNA片段进行分析,最终是否能实现对长序列DNA做分析还有待进一步努力。威斯康星大学的Smith等人也用PNA探针和飞行时间质谱仪分析了人体内酪氨酸酶基因的多态位点.不管是何种检测系统,都需要利用一些必要的仪器与软件,如扫描共聚焦显微镜可以在微米级的分辨率下检测芯片表面数以千计的探针杂交结果,很多公司也为芯片的分析开发了相应的软件,以便快速地对杂交数据进行处理和分析。除了上述通过杂交获得分析结果的微小阵列芯片以外,还有其他多种具有不同微结构(如微通道、反应腔、过滤器等等)的芯片正在研制和开发中,这些芯片的大小一般为1 cm2.生物芯片的研究在80年代就已开始,如杜邦公司研究的芯片毛细管电泳技术。已开发的生物芯片种类越来越多,如毛细管电泳芯片、细胞分离芯片、免疫芯片、质谱分析芯片、核酸扩增芯片等,所有这些芯片的研究与开发为以后分析仪器的微型化和缩微芯片实验室的实现打下了良好的基础。发展方向与微加工技术朝纳米尺度发展一样,某些种类的生物芯片的研究也正在朝向纳米量级发展。研究人员发现一些天然分子或分子的生物自组装能力完全可以用于制作纳米器件.例如,用胶原质做导线,抗体做夹子,DNA做存储器,膜蛋白做泵等等。虽然尚无成功的纳米芯片出现.人们利用分子的自组装特性制作了一些结构,如直径为0.5 μm、长30 μm的脂质管;直径0.7 μm的圆形多肽纳米管和显微分子齿轮等。这些利用分子来设计和装配仪器零件类似物的研究,为纳米芯片的开发打下了良好的基础。全集成对生物芯片研究人员来说,最终的研究目标是对分析的全过程实现全集成,即制造微型全分析系统(micro total analytical systems)或缩微芯片实验室(laboratory-on-a-chip)。在芯片的功能集成方面,已有了一批成果.首先,美国Nanogen公司、Affymetrix公司、宾夕法尼亚大学医学院和密西根大学的科学家们通过利用在芯片上制作出的加热器、阀门、泵、微量分析器、电化学检测器或光电子学检测器等,将样品制备、化学反应和检测3部分作了部分集成,并在此基础上先后制作出了结构不同的缩微芯片实验室样机。例如,Nanogen公司的科学家采用生物电子芯片在较短时间内先通过施加高频交流电场把微生物从人的血样中分离出来,然后用电脉冲进行破胞处理,最后对破胞后所得的脱氧核糖核酸进行片段化和杂交检测。该实验的成功是生物芯片研究领域的一大突破,它向人们展示了用生物芯片制作缩微实验室的可能性。重要价值生物芯片技术另外一个重要、且具有很强应用价值的发展方向就是为新药的开发提供高通量乃至超高通量筛选的技术平台。该项技术是将生物芯片技术所具有的高集成度与组合化学技术、受体结合分析及机器人自动化技术等相结合而产生的。组合化学是利用高分子载体快速同步合成先导物的类似物和衍生物的一种化学方法,它使过去的衍生物个体化合成方式发展成以串联和并联方式同步合成数以千计乃至数万个化合物的组合合成方式.反应后先对混合物进行分组筛选,然后根据生物活性再决定是否对个别化合物进行分离纯化。这种根据母体化合物结构快速合成化合物群体,其结构范围又可以预测的方法能很快建立起庞大的化学衍生物库,使得先导化合物的化学修饰进程得以大大加快.利用生物芯片技术还能对天然植物成分进行筛选和分析,这在中药的现代化发展中非常有用。生物芯片技术的介入及相关的微量液体分配技术及各种检测技术的采用,将使新药的研究与开发在技术上有一个较大的突破,从而加速新药筛选市场的开发,已有多家公司正在从事这类研究与开发工作。研究展望生物芯片技术是一项综合性的高新技术,它涉及生物、化学、医学、精密加工、光学、微电子技术,信息等领域,是一个学科交叉性很强的研究项目。虽然生物芯片的研究已有了巨大的发展,但一些相关技术如检测技术的发展制约了生物芯片技术的进一步发展.这是因为随着芯片集成度的提高,所用反应物量的减少,其产生的信号也越来越微弱,因而,对高精度检测器的要求迫在眉睫。此外,微加工技术、芯片的封装和保存等也是在生物芯片的研发中应注重的方面.经过近十多年的不懈努力,生物芯片技术已开始从不成熟逐步走向成熟,并已开始给生命科学研究的许多领域开始带来冲击甚至是革命。2013年1月Nature Genetics出了一期关于微阵列芯片技术的增刊,全面介绍了该技术的发展状况及几个主要应用领域,如重复测序和突变检测、基因表达分析、新药开发、生物信息学、群体遗传学研究等.由此我们可以看出微阵列芯片技术的重要性。对于生物芯片而言,微阵列芯片才只是其中一种检测芯片,与其并级的还有其他多种具有不同功能的芯片.单是其中一种技术就有如此重大的影响力,对生物芯片技术来说,它所能带来的重大意义和深远影响将是不可估量的。从样品的制备、化学反应到检测这三部分的分部集成已实现,全集成已初见端倪.到21世纪生物芯片市场的销售将达百亿美元以上,所以世界各国的公司、研究机构都在积极地进行研究、申请专利、开发新产品,争取早日登陆市场。较早涉足该领域的以美国为首的英、加、荷、德、日等几个国家已经取得了令人眩目的成就.面对这样的情况,我国应及早投入一定的财力、人力和物力,争取在该领域中占有一席之地,避免出现在很多高技术产业中那样技术几乎全被外国人垄断的局面。争取在基因和蛋白质表达芯片,微缩芯片实验室和超高通量药物筛选等方面有自己独到的创新和作为。
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:50次
参与编辑人数:26位
最近更新时间: 10:31:43
贡献光荣榜
扫码下载APP}

我要回帖

更多关于 西安紫苹果装饰质量差 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信