二块移动硬盘不能显示磁盘能组磁盘阵容吗

查看:13958|回复:10
助理工程师
1.你的主版必须支持RAID技术
2.最好是两快相同厂家相同参数的硬盘
3.准备一张RAID0或者1驱动软盘(一般主板自带,考到软驱上)没有上网找
1.快硬盘接好 进入bios 把IDE RAID栏设置成Eenabled 如果是SATA则把SATA Primary Master RAID和 Secndry Master RAID 设置成Enabled 保存退出
2.后进入自检过程,检测完IDE硬盘设备后,则进入RAID检测 如果不正常,会进行警告
3.重做系统 入WINDOWS安装光盘,进入安装程序,和以往安装方式唯一不同的地方在于,在安装程序进行系统设备自检的时候,会提示是否安装第三方SCSI设备,如果安装,会有提示,则我们此时的RIAD0设备系统归类位SCSI类,则我们需要是进入RAID0/1驱动安装进程。
3. 顺利安装WINDOWS完毕之后,按照以往方式安装主板芯片组驱动
要提示的是 有些主板芯片组 所带的识别RAID的驱动 必须安装 如果没安装 还是不能识别RAID
4安装成功后我们用 SiSoftware Sandra Lite 2005的磁盘性能测试进行测试 下看看 理论上是普通ATA或者SATA两倍的读写能力   
  不过 一般40-45MB/s的硬盘  组建RAID0能达到75-85MB/S  确实惊人  对于大量读写硬盘的人来说~ 组建RAID1是着重保护数据的RAID0 好出多多 还有俺只搞过两次RAID0和1(给公司搞过0一次1一次 机会不多没办法 还有SATA硬盘没搞过 估计和IDE的差不多 有搞过的 和俺说下 谢谢了  俺买不起SATA硬盘-_- 现在还是IDE80G 想搞也找不到一样的了) 
还有说下俺搞的是INTEL的& && &AMD的没搞过 正在找看看 呵呵&&INTEL全系列南桥芯片 只有后面带R的支持RAID 比如ICH8R ich9R等等
下面来说说RAID1-5 (网上搜集3.4.5没搞过 凑着一块学习吧!)
RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为磁盘阵列。其实,从RAID的英文原意中,我们已经能够多少知道RAID就是一种由多块廉价磁盘构成的冗余阵列。虽然RAID包含多块磁盘,但是在操作系统下是作为一个独立的大型存储设备出现。RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。
  人们在开发RAID时主要是基于以下设想,即几块小容量硬盘的价格总和要低于一块大容量的硬盘。虽然目前这一设想还没有成为现实,RAID在节省成本方面的作用还不是很明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
  RAID 0
  我们在前文中已经提到RAID分为几种不同的等级,其中,RAID 0是最简单的一种形式。RAID 0可以把多块硬盘连接在一起形成一个容量更大的存储设备。最简单的RAID 0技术只是提供更多的磁盘空间,不过我们也可以通过设置,使用RAID 0来提高磁盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,但是实现成本是最低的。
  RAID 0最简单的实现方式就是把几块硬盘串联在一起创建一个大的卷集。磁盘之间的连接既可以使用硬件的形式通过智能磁盘控制器实现,也可以使用操作系统中的磁盘驱动程序以软件的方式实现。图示如下:
  在上述配置中,我们把4块磁盘组合在一起形成一个独立的逻辑驱动器,容量相当于任何任何一块单独硬盘的4倍。如图中彩色区域所示,数据被依次写入到各磁盘中。当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中。
  这种设置方式只有一个好处,那就是可以增加磁盘的容量。至于速度,则与其中任何一块磁盘的速度相同,这是因为同一时间内只能对一块磁盘进行I/O操作。如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,无法继续使用。从这种意义上说,使用纯RAID 0方式的可靠性仅相当于单独使用一块硬盘的1/4(因为本例中RAID 0使用了4块硬盘)。
  虽然我们无法改变RAID 0的可靠性问题,但是我们可以通过改变配置方式,提供系统的性能。与前文所述的顺序写入数据不同,我们可以通过创建带区集,在同一时间内向多块磁盘写入数据。具体如图所示:
  上图中,系统向逻辑设备发出的I/O指令被转化为4项操作,其中的每一项操作都对应于一块硬盘。我们从图中可以清楚的看到通过建立带区集,原先顺序写入的数据被分散到所有的四块硬盘中同时进行读写。四块硬盘的并行操作使同一时间内磁盘读写的速度提升了4倍。
  在创建带区集时,合理的选择带区的大小非常重要。如果带区过大,可能一块磁盘上的带区空间就可以满足大部分的I/O操作,使数据的读写仍然只局限在少数的一、两块硬盘上,不能充分的发挥出并行操作的优势。另一方面,如果带区过小,任何I/O指令都可能引发大量的读写操作,占用过多的控制器总线带宽。因此,在创建带区集时,我们应当根据实际应用的需要,慎重的选择带区的大小。
  我们已经知道,带区集可以把数据均匀的分配到所有的磁盘上进行读写。如果我们把所有的硬盘都连接到一个控制器上的话,可能会带来潜在的危害。这是因为当我们频繁进行读写操作时,很容易使控制器或总线的负荷超载。为了避免出现上述问题,建议用户可以使用多个磁盘控制器。示意图如下:
  这样,我们就可以把原先控制器总线上的数据流量降低一半。当然,最好解决方法还是为每一块硬盘都配备一个专门的磁盘控制器。
虽然RAID 0可以提供更多的空间和更好的性能,但是整个系统是非常不可靠的,如果出现故障,无法进行任何补救。所以,RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。
  RAID 1和RAID 0截然不同,其技术重点全部放在如何能够在不影响性能的情况下最大限度的保证系统的可靠性和可修复性上。RAID 1是所有RAID等级中实现成本最高的一种,尽管如此,人们还是选择RAID 1来保存那些关键性的重要数据。
  RAID 1又被称为磁盘镜像,每一个磁盘都具有一个对应的镜像盘。对任何一个磁盘的数据写入都会被复制镜像盘中;系统可以从一组镜像盘中的任何一个磁盘读取数据。显然,磁盘镜像肯定会提高系统成本。因为我们所能使用的空间只是所有磁盘容量总和的一半。下图显示的是由4块硬盘组成的磁盘镜像,其中可以作为存储空间使用的仅为两块硬盘(画斜线的为镜像部分)。
  RAID 1下,任何一块硬盘的故障都不会影响到系统的正常运行,而且只要能够保证任何一对镜像盘中至少有一块磁盘可以使用,RAID 1甚至可以在一半数量的硬盘出现问题时不间断的工作。当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据。
  通常,我们把出现硬盘故障的RAID系统称为在降级模式下运行。虽然这时保存的数据仍然可以继续使用,但是RAID系统将不再可靠。如果剩余的镜像盘也出现问题,那么整个系统就会崩溃。因此,我们应当及时的更换损坏的硬盘,避免出现新的问题。
  更换新盘之后,原有好盘中的数据必须被复制到新盘中。这一操作被称为同步镜像。同步镜像一般都需要很长时间,尤其是当损害的硬盘的容量很大时更是如此。在同步镜像的进行过程中,外界对数据的访问不会受到影响,但是由于复制数据需要占用一部分的带宽,所以可能会使整个系统的性能有所下降。
  因为RAID 1主要是通过二次读写实现磁盘镜像,所以磁盘控制器的负载也相当大,尤其是在需要频繁写入数据的环境中。为了避免出现性能瓶颈,使用多个磁盘控制器就显得很有必要。下图示意了使用两个控制器的磁盘镜像。
  使用两个磁盘控制器不仅可以改善性能,还可以进一步的提高数据的安全性和可用性。我们已经知道,RAID 1最多允许一半数量的硬盘出现故障,所以按照我们上图中的设置方式(原盘和镜像盘分别连接不同的磁盘控制),即使一个磁盘控制器出现问题,系统仍然可以使用另外一个磁盘控制器继续工作。这样,就可以把一些由于意外操作所带来的损害降低到最低程度。
  RAID 0+1
  单独使用RAID 1也会出现类似单独使用RAID 0那样的问题,即在同一时间内只能向一块磁盘写入数据,不能充分利用所有的资源。为了解决这一问题,我们可以在磁盘镜像中建立带区集。因为这种配置方式综合了带区集和镜像的优势,所以被称为RAID 0+1。
  热插拔
  一些面向高端应用的磁盘镜像系统都可以提供磁盘的热插拔功能。所谓热插拔功能,就是允许用户在不关闭系统,不切断电源的情况下取出和更换损害的硬盘。如果没有热插拔功能,即使磁盘损坏不会造成数据的丢失,用户仍然需要暂时关闭系统,以便能够对硬盘进行更换。现在,使用热插拔技术只要简单的打开连接开关或者转动手柄就可以直接取出硬盘,而系统仍然可以不间断的正常运行。
  RAID 3和RAID 5都分别使用了校验的概念提供容错能力。简单的说,我们可以把校验想象为一种二进制的校验和,一个可以告诉你其它所有字位是否正确的特殊位。
  在数据通信领域,奇偶校验被用来确定数据是否被正确传送。例如,对于每一个字节,我们可以简单计算数字位1的个数,并在字节内加入附加校验位。在数据的接收方,如果数字位1的个数为奇数,而我们使用的又是奇数校验的话,则说明该字节是正确的。同样对偶数校验也是如此。然而,如果数字位1的个数和校验位的奇偶性不一致的话,则说明数据在传送过程中出现了错误。
  RAID系统也采用了相似的校验方法,可以在磁盘系统中创建校验块,校验块中的每一位都用来对其它关联块中的所有对应位进行校验。
  在数据通讯领域,虽然校验位可以告诉我们某个字节是否正确,但是无法告诉我们到底是哪一位出现了问题。这就是说我们可以检测错误,但是不能改正错误。对于RAID,这是远远不够的。固然错误的检测非常重要,但是如果不能对错误进行修复,我们就无法提高整个系统的可靠性。
  举个例子来说,假设我们发现校验块中第10个字节的第5位不正确。如果这个校验块包含的是另外8个数据块的校验信息,那么哪一个数据块才是问题的罪魁祸首呢?也许你可能会想为每一个数据块都建立一个校验块就可以解决问题。但是这种方法很难实现。事实上,RAID主要是借助磁盘控制器的错误报告检测错误位置,并进行修复。如果磁盘控制器在读取数据时没有发出任何“抱怨”,那么系统将会视该数据为正确数据,继续使用。
  RAID 3采用的是一种较为简单的校验实现方式,使用一个专门的磁盘存放所有的校验数据,而在剩余的磁盘中创建带区集分散数据的读写操作。例如,在一个由4块硬盘构成的RAID 3系统中,3块硬盘将被用来保存数据,第四块硬盘则专门用于校验。这种配置方式可以用3+1的形式表示,具体如图:
  在上图中,我们用相同的颜色表示使用同一个校验块的所有数据块,斜线标出的部分为校验块。校验块和所有对应的数据块一起构成一个带区。
  第四块硬盘中的每一个校验块所包含的都是其它3块硬盘中对应数据块的校验信息。RAID 3的成功之处就在于不仅可以象RAID 1那样提供容错功能,而且整体开销从RAID 1的50%下降为25%(RAID 3+1)。随着所使用磁盘数量的增多,成本开销会越来越小。举例来说,如果我们使用7块硬盘,那么总开销就会将到12.5%(1/7)。
  在不同情况下,RAID 3读写操作的复杂程度不同。最简单的情况就是从一个完好的RAID 3系统中读取数据。这时,只需要在数据存储盘中找到相应的数据块进行读取操作即可,不会增加任何额外的系统开销。
  当向RAID 3写入数据时,情况会变得复杂一些。即使我们只是向一个磁盘写入一个数据块,也必须计算与该数据块同处一个带区的所有数据块的校验值,并将新值重新写入到校验块中。例如,当我们向上图中的绿色数据块写入数据时,必须重新计算所有3个绿色数据块的校验值,然后重写位于第四块硬盘的绿色校验块。由此我们可以看出,一个写入操作事实上包含了数据读取(读取带区中的关联数据块),校验值计算,数据块写入和校验块写入四个过程。系统开销大大增加。
  我们可以通过适当设置带区的大小使RAID系统得到简化。如果某个写入操作的长度恰好等于一个完整带区的大小(全带区写入),那么我们就不必再读取带区中的关联数据块计算校验值。我们只需要计算整个带区的校验值,然后直接把数据和校验信息写入数据盘和校验盘即可。
  到目前为止,我们所探讨的都是正常运行状况下的数据读写。下面,我们再来看一下当硬盘出现故障时,RAID系统在降级模式下的运行情况。
  RAID 3虽然具有容错能力,但是系统会受到影响。当一块磁盘失效时,该磁盘上的所有数据块必须使用校验信息重新建立。如果我们是从好盘中读取数据块,不会有任何变化。但是如果我们所要读取的数据块正好位于已经损坏的磁盘,则必须同时读取同一带区中的所有其它数据块,并根据校验值重建丢失的数据。
  当我们更换了损坏的磁盘之后,系统必须一个数据块一个数据块的重建坏盘中的数据。整个过程包括读取带区,计算丢失的数据块和向新盘写入新的数据块,都是在后台自动进行。重建活动最好是在RAID系统空闲的时候进行,否则整个系统的性能会受到严重的影响。
  RAID 3的性能问题
  除了我们在上文讨论过的有关数据写入和降级模式的问题之外,在使用RAID 3的过程中还有其他一些性能上的问题需要引起我们的注意。RAID 3所存在的最大一个不足同时也是导致RAID 3很少被人们采用的原因就是校验盘很容易成为整个系统的瓶颈。
  我们已经知道RAID 3会把数据的写入操作分散到多个磁盘上进行,然而不管是向哪一个数据盘写入数据,都需要同时重写校验盘中的相关信息。因此,对于那些经常需要执行大量写入操作的应用来说,校验盘的负载将会很大,无法满足程序的运行速度,从而导致整个RAID系统性能的下降。鉴于这种原因,RAID 3更加适合应用于那些写入操作较少,读取操作较多的应用环境,例如数据库和WEB服务器等。
  RAID 5
  RAID 3所存在的校验盘的性能问题使几乎所有的RAID系统都转向了RAID 5。在运行机制上,RAID 5和RAID 3完全相同,也是由同一带区内的几个数据块共享一个校验块。
  RAID 5和RAID 3的最大区别在于RAID 5不是把所有的校验块集中保存在一个专门的校验盘中,而是分散到所有的数据盘中。RAID 5使用了一种特殊的算法,可以计算出任何一个带区校验块的存放位置。具体如图所示:
  注意图中的校验块已经被分散保存在不同的磁盘中,这样就可以确保任何对校验块进行的读写操作都会在所有的RAID磁盘中进行均衡,从而消除了产生瓶颈的可能。
& & RAID 6是由一些大型企业提出来的私有RAID级别标准,它的全称叫“Independent Data disks with two independent distributed parity schemes(带有两个独立分布式校验方案的独立数据磁盘)”。这种RAID级别是在RAID 5的基础上发展而成,因此它的工作模式与RAID 5有异曲同工之妙,不同的是RAID 5将校验码写入到一个驱动器里面,而RAID 6将校验码写入到两个驱动器里面,这样就增强了磁盘的容错能力,同时RAID 6阵列中允许出现故障的磁盘也就达到了两个,但相应的阵列磁盘数量最少也要4个。下图是RAID 6的图解。
& & 从图中我们可以看到每个磁盘中都具有两个校验值,而RAID 5里面只能为每一个磁盘提供一个校验值,由于校验值的使用可以达到恢复数据的目的,因此多增加一位校验位,数据恢复的能力就越强。不过在增加一位校验位后,就需要一个比较复杂的控制器来进行控制,同时也使磁盘的写能力降低,并且还需要占用一定的磁盘空间。因此,这种RAID级别应用还比较少,相信随着RAID 6技术的不断完善,RAID 6将得到广泛应用。RAID 6的磁盘数量为N+2个。
& & RAID 7全称叫“Optimized Asynchrony for High I/O Rates as well as High Data Transfer Rates(最优化的异步高I/O速率和高数据传输率)”,它与以前我们见到RAID级别具有明显的区别。RAID 7完全可以理解为一个独立存储计算机,它自身带有操作系统和管理工具,完全可以独立运行。RAID 7的图解如下:
& & 图中每个“柱体”是由多个磁盘构成,而不是我们以前看到的一个磁盘表示一个“柱体”。从上图我们可以看出,每个磁盘都有一个独立的I/O通道,它们与主通道相连,操作系统可以直接对每个磁盘的访问进行控制,可以让每个磁盘在不同的时段进行数据读写,这样就大大改善了I/O的应用,同时也提高了数据读写的能力,而这种磁盘访问方式也叫做非同步访问。在RAID 7中,提供了一个磁盘作为专门的校验盘,它适合于任何一个磁盘进行数据恢复。
& & 总的来说,RAID 7可完全独立于主机运行,不占用主机CPU资源。RAID 7存储计算机操作系统(Storage Computer Operating System)是一套实时事件驱动操作系统,主要用来进行系统初始化和安排RAID 7磁盘阵列的所有数据传输,并把它们转换到相应的物理存储驱动器上。通过Storage Computer Operating System来设定和控制读写速度,可使主机I/O传递性能达到最佳。如果一个磁盘出现故障,还可自动执行恢复操作,并可管理备份磁盘的重建过程。RAID 7与我们传统的RAID级别有很大区别,它的优点很多,但缺点也非常明显,那就是价格非常高,对于普通企业用户并不实用。
& & RAID 5E是由IBM公司提出的一种私有RAID级别,没有成为国际标准。这种RAID级别也是从RAID 5的基础上发展而来的,它与RAID 5不同的地方是将数据校验信息平均分布在每一个磁盘中,并且每个磁盘都要预留一定的空间,这部分空间没有进行条带化(条带是指数据为了保存在RAID中,被划分成的最小单元。通过对条带进行调整,可以使支持RAID的磁盘阵列性能更加优异)。当一个磁盘出现故障时,这个磁盘上的数据将被压缩到其他磁盘预留没有条带化的空间内,达到数据保护的作用,而这时候的RAID级别则从RAID 5E转换成了RAID 5,继续保护磁盘数据。RAID 5E允许两个磁盘出错,最少也需要4个磁盘才能实现RAID 5E。下图是RAID 5E的图解:
& & RAID 5EE也是由IBM公司提出的一种私有RAID级别,它也没有成为国际标准。RAID 5EE的工作原理与RAID 5E基本相同,它也是在每个磁盘中预留一部分空间作为分布的热备盘,当一个硬盘出现故障时,这个磁盘上的数据将被压缩到分布的热备盘中,达到数据的保护作用。不过与RAID 5E不同的是RAID 5EE内增加了一些优化技术,使RAID 5EE的工作效率更高,压缩数据的速度也更快。RAID 5EE允许两个磁盘出错,最少需要4个磁盘实现。
& & RAID 1E是RAID 1的增强版本,它并不是我们通常所说的RAID 0+1的组合。RAID 1E的工作原理与RAID基本上是一样的,只是RAID 1E的数据恢复能力更强,但由于RAID 1E写一分数据至少要两次,因此,RAID处理器的负载得到加强,从而造成磁盘读写能力的下降。RAID 1E至少需要3块硬盘才能实现。RAID 1E和RAID 1的工作原理图如下:
& & RAID DP也属于一种私有的RAID标准,它实际上也就是双RAID 3技术,所谓双RAID 3技术主要是说在同一磁盘阵列中组建两个独立的不同算法的校验磁盘,在单校验磁盘下工作原理与RAID 3一样,但增加了一个校验盘之后,则使整个磁盘阵列的安全性得到提高,并且它的性能比RAID 3和RAID 5都要好。
& & RAID ADG相当于双RAID 5技术,是HP提出来的一种RAID技术。这种技术部署了2个奇偶校验集,并提供了2个硬盘的容量存储这些奇偶校验信息,能同时允许2块硬盘出现故障,有效提升了磁盘内数据的可靠性。不过这种技术会严重影响系统速度,所以并没有得到推广。
一般,RAID系统可以存在于各种接口界面,就我们现时来说,PATA、SATA以及SCSI均有相应的硬盘可以组成RAID。随着Intel 865/875系列芯片组的发布,家用市场的硬盘接口开始转向SATA,而RAID方式也将从PATA过渡到SATA。
RAID技术伴随着人们的使用过程,经历了一系列的变迁与发展。而在家用市场上,我们一般只能看到RAID 0、RAID 1以及RAID 0+1这几种磁盘阵列方式。不过从DFI Lanparty主板的诞生开始,我们又迎来了第四种磁盘阵列方式,那就是RAID 1.5。
从实际应用来说,家用RAID的组建大多数情况是为了进一步提高磁盘的读写性能,而数据的备份可由其他方式达到(如刻录)。所以,在只有2个硬盘的情况下,人们愿意尝试的以RAID 0为主,不过RAID 1.5的诞生让我们改变了这一理念。究竟这两种相对廉价的磁盘阵列方式具有何等的性能?让我们来为大家揭晓。
RAID 0使用一种称为“条带”(striping)的技术把数据分布到各个磁盘上。在那里每个“条带”被分散到连续“块”(block)上,数据被分成从512字节到数兆字节的若干块后,再交替写到磁盘中。第1块被写到磁盘1中,第2块被写到磁盘2中,如此类推。当系统到达阵列中的最后一个磁盘时,就写到磁盘1的下一分段,如此下去。
分割数据可以将I/O负载平均分配到所有的驱动器中。由于驱动器可以同时写或读,使得性能显著提高。但是,它却没有数据保护能力。如果一个磁盘出现故障,那么数据就会全盘丢失。因此,RAID 0不适用于关键任务环境,但是,它却非常适合于视频、图象的制作和编辑。
RAID 1也被称为镜象,因为一个磁盘上的数据被完全复制到另一个磁盘上。如果一个磁盘的数据发生错误,或者硬盘出现了坏道,那么另一个硬盘可以补救回磁盘故障而造成的数据损失和系统中断。另外,RAID 1还可以实现双工——即可以复制整个控制器,这样在磁盘故障或控制器故障发生时,您的数据都可以得到保护。镜象和双工的缺点是需要多出一倍数量的驱动器来复制数据,但系统的读写性能并不会由此而提高,这可能是一笔不小的开支。RAID l可以由软件或硬件方式实现。
RAID 2是为大型机和超级计算机开发的带海明码校验磁盘阵列。磁盘驱动器组中的第1个、第2个、第4个……第2的n次幂个磁盘驱动器是专门的校验盘,用于校验和纠错。如下图:七个磁盘驱动器组建的RAID 2,第1、2、4个磁盘驱动器(红色)是纠错盘,其余的(紫色)用于存放数据。RAID 2对大数据量的读写具有极高的性能,但少量数据的读写时性能反而不好,所以RAID 2实际使用较少。
由于RAID 2的特殊性,只要我们使用的磁盘驱动器越多,校验盘在其中占的百分比越少。如果希望达到比较理想的速度和较好的磁盘利用率,那最好可以增加保存校验码ECC码的硬盘,但是这就要付出更多硬盘的购买成本,来确保数据冗余。对于控制器的设计来说,它比下面所说的RAID 3,4或5要简单。
RAID 3,即带有专用奇偶位(parity)的条带。每个条带片上都有相当于一“块”那么大的空间用来存储冗余信息,即奇偶位。奇偶位是编码信息,如果某个磁盘的数据有误,或者磁盘发生故障,就可以用它来恢复数据。在数据密集型环境或单一用户环境中,组建RAID 3对访问较长的连续记录有利,不过同RAID 2一样,访问较短记录时,性能会有所下降。
RAID 4是带奇偶校验码的独立磁盘结构。它和RAID 3很相似,不同的是RAID 4对数据的访问是按数据块进行的。RAID 3是一次一横条,而RAID 4一次一竖条。所以RAID 3常须访问阵列中所有的硬盘驱动器,而RAID 4只须访问有用的硬盘驱动器。这样读数据的速度大大提高了,但在写数据方面,需将从数据硬盘驱动器和校验硬盘驱动器中恢复出的旧数据与新数据校验,然后再将更新后的数据和检验位写入硬盘驱动器,所以处理时间较RAID 3长。
RAID 5也被叫做带分布式奇偶位的条带。每个条带上都有相当于一个“块”那么大的地方被用来存放奇偶位。与RAID 3不同的是,RAID 5把奇偶位信息也分布在所有的磁盘上,而并非一个磁盘上,大大减轻了奇偶校验盘的负担。尽管有一些容量上的损失,RAID 5却能提供较为完美的整体性能,因而也是被广泛应用的一种磁盘阵列方案。它适合于输入/输出密集、高读/写比率的应用程序,如事务处理等。
为了具有RAID 5级的冗余度,我们需要至少三个磁盘组成的磁盘阵列。RAID 5可以通过磁盘阵列控制器硬件实现,也可以通过某些网络操作系统软件实现。
RAID 6是带有两种分布存储的奇偶校验码的独立磁盘结构。它使用了分配在不同的磁盘上的第二种奇偶校验来实现增强型的RAID 5。它能承受多个驱动器同时出现故障,但是,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了系统的负载较重,大大降低整体磁盘性能,而且,系统需要一个极为复杂的控制器。当然,由于引入了第二种奇偶校验值,我们所以需要的是N+2个磁盘。
RAID 7自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7存储计算机操作系统(Storage Computer Operating System)是一套实时事件驱动操作系统,主要用来进行系统初始化和安排RAID 7磁盘阵列的所有数据传输,并把它们转换到相应的物理存储驱动器上。通过Storage Computer Operating System来设定和控制读写速度,可使主机I/O传递性能达到最佳。如果一个磁盘出现故障,还可自动执行恢复操作,并可管理备份磁盘的重建过程。
RAID 7采用的是非同步访问方式,极大地减轻了数据写瓶颈,提高了I/O速度。(所谓非同步访问,即RAID 7的每个I/O接口都有一条专用的高速通道,作为数据或控制信息的流通路径,因此可独立地控制自身系统中每个磁盘的数据存取。)如果RAID 7有N个磁盘,那么除去一个校验盘(用作冗余计算)外,可同时处理N-1个主机系统随机发出的读/写指令,从而显著地改善了I/O应用。RAID 7系统内置实时操作系统还可自动对主机发送过来的读/写指令进行优化处理,以智能化方式将可能被读取的数据预先读入快速缓存中,从而大大减少了磁头的转动次数,提高了I/O速度。RAID 7可帮助用户有效地管理日益庞大的数据存储系统,并使系统的运行效率提高至少一倍以上,满足了各类用户的不同需求。
RAID 10(RAID 0+1):
RAID 10,也被称为镜象阵列条带,现在我们一般称它为RAID 0+1。RAID 10(RAID 0+1)提供100%的数据冗余,支持更大的卷尺寸。组建RAID 10(RAID 0+1)需要4个磁盘,其中两个为条带数据分布,提供了RAID 0的读写性能,而另外两个则为前面两个硬盘的镜像,保证了数据的完整备份。
RAID 30也被称为专用奇偶位阵列条带。它具有RAID 0和RAID 3的特性,由两组RAID 3的磁盘(每组3个磁盘)组成阵列,使用专用奇偶位,而这两种磁盘再组成一个RAID 0的阵列,实现跨磁盘抽取数据。RAID 30提供容错能力,并支持更大的卷尺寸。象RAID 10一样,RAID 30也提供高可靠性,因为即使有两个物理磁盘驱动器失效(每个阵列中一个),数据仍然可用。
RAID 30最小要求有6个驱动器,它最适合非交互的应用程序,如视频流、图形和图象处理等。这些应用程序顺序处理大型文件,而且要求高可用性和高速度。
RAID 50被称为分布奇偶位阵列条带。同RAID 30相仿的,它具有RAID 5和RAID 0的共同特性。它由两组RAID 5磁盘组成(每组最少3个),每一组都使用了分布式奇偶位,而两组硬盘再组建成RAID 0,实验跨磁盘抽取数据。RAID 50提供可靠的数据存储和优秀的整体性能,并支持更大的卷尺寸。即使两个物理磁盘发生故障(每个阵列中一个),数据也可以顺利恢复过来。
RAID 50最少需要6个驱动器,它最适合需要高可靠性存储、高读取速度、高数据传输性能的应用。这些应用包括事务处理和有许多用户存取小文件的办公应用程序。
RAID 53称为高效数据传送磁盘结构。结构的实施同Level 0数据条阵列,其中,每一段都是一个RAID 3阵列。它的冗余与容错能力同RAID 3。这对需要具有高数据传输率的RAID 3配置的系统有益,但是它价格昂贵、效率偏低。
RAID 1.5是一个新生的磁盘阵列方式,它具有RAID 0+1的特性,而不同的是,它的实现只需要2个硬盘。从表面上来看,组建RAID 1.5后的磁盘,两个都具有相同的数据。当然,RAID 1.5也是一种不能完全利用磁盘空间的磁盘阵列模式,因此,两个80GB的硬盘在组建RAID 1.5后,和RAID 1是一样的,即只有80GB的实际使用空间,另外80GB是它的备份数据。如果把两个硬盘分开,分别把他们运行在原系统,也是畅通无阻的。但通过实际应用,我们发现如果两个硬盘在分开运行后,其数据的轻微改变都会引起再次重组后的磁盘阵列,没法实现完全的数据恢复,而是以数据较少的磁盘为准。
没人来。这好文章没人看,沙发
确实不错啊 ,看了,顶你一个,呵呵.
DDDDDDDDDDDDDDD
是非常不错..
谢谢分享了哈..
正好用的上
楼主好观点。膜拜~
& &www.sh-3a.com
&&www.dnfho.com
&&www.blgj-steel.com
&&www.chinassad.com
&&www.bfcmbj.com
&&www.fuyuyinshi.com
&&www.jiaxiangxian.com
&&www.wyksp.com
&&www.hfloge.com
&&www.laicf.com
是做数据分区的raid,还是针对整个系统的raid?}

我要回帖

更多关于 移动硬盘不能显示磁盘 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信