碳素陶瓷是碳化硅陶瓷复合材料料吗

大家都在搜
什么是复合材料,什么是高分子材料
erer201001的答复:
聚氨脂。@_@有机硅:苯基单体及其系列产品,直接法合成烷氧基硅烷,多晶硅工业副产四氯化硅综合利用,高性能硅橡胶,新型硅油,特种硅树脂,硅烷偶联剂,有机硅/有机改性材料。   氟化工:中低品位萤石采选利用,电子级氟化氢,高纯无水氟化铝,高分子比(2.8以上)冰晶石,高活性氟化钾,全氟烷基乙烯基醚类,氟碳醇系列产品,高性能氟树脂、氟橡胶、环境友好型制冷制和清洗剂、含氟膜材料、氟化石墨、氟化沥青、含氟电子化学品、含氟医农药、含氟液晶、含氟染料及其中间体等产业化关键技术。1复合材料是由两种或多种性质不同的材料通过物理和化学复合,组成具有两个或两个以上相态结构的材料。该类材料不仅性能优于组成中的任意一个单独的材料,而且还可具有组分单独不具有的独特性能。结构复合材料主要作为承力结构使用的材料,由能承受载荷的增强体组元(如玻璃、陶瓷、碳素、高聚物、金属、天然纤维、织物、晶须、片材和颗粒等)与能联结增强体成为整体材料同时又起传力作用的基体组元(如树脂、金属、陶瓷、玻璃、碳和水泥等)构成。包括压电、导电、雷达隐身、永磁、光致变色、吸声、阻燃、生物自吸收等种类繁多的复合材料,具有广阔的发展前途。 高分子是生命存在的形式。 进入二十世纪之后,高分子材料进入了大发展阶段。首先是在1907年,LeoBakeland发明了酚醛塑料。加热后软化,形成高分子熔体的塑料成为热塑性塑料,主要的热塑性塑料有聚乙烯(PE[1])、聚丙烯(PP[2])、聚苯乙烯(PS[3])、聚甲基丙烯酸甲酯(PMMA,俗称有机玻璃[4])、聚氯乙烯(PVC[5])、尼龙(Nylon[6])、聚碳酸酯(PC[7])、聚氨酯(PU[8])、聚四氟乙烯(特富龙,PTFE[9])、聚对苯二甲酸乙二醇酯(PET,PETE[10])、加热后固化,形成交联的不熔结构的塑料称为热固性塑料:常见的有环氧树脂[11],酚醛塑料,聚酰亚胺,三聚氰氨甲醛树脂等。 好运!无机非金属材料_百度百科
清除历史记录关闭
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
无机非金属材料
无机非(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与和金属材料并列的三大材料之一。
无机非金属材料常见种类
二氧化硅、水泥、 玻璃、 陶瓷
无机非金属材料成分结构
在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类
无机非金属材料
材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、及良好的铁电性、铁磁性和压电性。
硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。
无机非金属材料应用领域
品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的
无机非金属材料分类
分类方法。通常把它们分为普通的(传统的)和的(新型的)无机非金属材料两大类。传统的无机非金属材料是和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工和电瓷等与人们的生产、生活息息相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(、玄武岩等)、碳素材料、非金属矿(、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和所不可缺少的物质基础。主要有先进陶瓷(advanced ceramics)、(noncrystal material〉、人工晶体〈artificial crys-tal〉、无机涂层(inorganic coating)、无机纤维(inorganic fibre〉等。
无机非金属材料传统工艺
传统无机非金属材料:
1.水泥和其他胶凝材料硅酸盐水泥、铝酸盐水泥、石灰、石膏等;
2.陶瓷粘土质、长石质、滑石质和骨灰质陶瓷等;
3.耐火材料硅质、硅酸铝质、高铝质、镁质、铬镁质等,玻璃硅酸盐 ;
4.搪 瓷 钢片、铸铁、铝和铜胎等;
5.铸 石 、玄武岩、铸石等;
研磨材料:氧化硅、氧化铝、碳化硅等;
:硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等 ;
碳素材料:石墨、焦炭和各种碳素制品等;
非金属矿:粘土、石棉、石膏、云母、大理石、水晶和金刚石等;
新型无机非金属材料
保温材料:
1.氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃和等
2.铁电和压电材料 钛酸钡系、锆钛酸铅系材料等
1.锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录和等;
2.导体陶瓷 钠、锂、氧离子的快离子导体和碳化硅等;
最早的无机非金属材料-天然石材
3.半导体陶瓷 钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金属元素氧化物系材料等。
:钇铝石榴石,氧化铝、氧化钇透明材料和石英系或多组分玻璃的光导纤维等
1.高温氧化物、碳化物、氮化物及硼化物等难熔化合物超硬材料 碳化钛、人造金刚石和立方氮化硼等
2.人工晶体 铝酸锂、钽酸锂、砷化镓、氟等
:长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等
无机:陶瓷基、金属基、碳素基的复合材料
传统无机非金属材料和新型无机非金属材料的比较:传统无机非金属材料具有性质稳定,抗腐蚀耐高温等优点,但质脆,经不起热冲击。新型无机非金属材料除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和功能等。
无机非金属材料分类
无机非金属材料传统陶瓷
其中,瓷是粉体的致密烧结体,较之较早的陶,其气孔率明显降低,致密度升高。
陶瓷在我国有悠久的历史,是中华民族古老文明的象征。从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。唐代的唐三彩、明清景德镇的瓷器均久负盛名。
传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、、高岭石等,它们都属于天然的硅酸盐。此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。
硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。黏土的化学组成为Al传3·2SiO·2H传,石英为SiO,长石为K传·Al传3·6SiO(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。
硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元。在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。
无机非金属材料精细陶瓷
精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和等方面取得了很好的进展,下面选择一些实例做简要的介绍。
高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。
已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。我国也在1990年装配了一辆并完成了试车。陶瓷发动机的材料选用氮化硅,它的机械强度高、硬度高、热膨胀系数低、导热性好、化学稳定性高,是很好的高温陶瓷材料。氮化硅可用多种方法合成,工业上普遍采用高纯硅与纯氮在1 300 ℃反应后获得:
3Si+2N2→Si3N4 (1 300 ℃)
高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等。
透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2 000 ℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3 100 ℃,比普通硼酸盐玻璃高1 500 ℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作温度高达1 200 ℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。
生物陶瓷人体器官和组织由于种种原因需要修复或再造时,选用的材料要求生物相容性好,对肌体无免疫排异反应;血液相容性好,无溶血、凝血反应;不会引起代谢作用异常现象;对人体无毒,不会致癌。已发展起来的生物合金、生物高分子和生物陶瓷基本上能满足这些要求。利用这些材料制造了许多人工器官,在临床上得到广泛的应用。但是这类人工器官一旦植入体内,要经受体内复杂的生理环境的长期考验。例如,不锈钢在常温下是非常稳定的材料,但把它做成人工关节植入体内,三五年后便会出现腐蚀斑,并且还会有微量金属离子析出,这是生物合金的缺点。做成的人工器官容易老化,相比之下,生物陶瓷是惰性材料,耐腐蚀,更适合植入体内。
氧化铝陶瓷做成的假牙与天然齿十分接近,它还可以做人工关节用于很多部位,如膝关节、肘关节、肩关节、指关节、髋关节等。ZrO2陶瓷的强度、断裂韧性和耐磨性比氧化铝陶瓷好,也可用以制造牙根、骨和股关节等。羟基磷灰石〔Ca10(PO4)6(OH)2〕是骨组织的主要成分,人工合成的与骨的生物相容性非常好,可用于颌骨、耳听骨修复和人工牙种植等。发现用熔融法制得的生物玻璃,如CaO-Na2O-SiO2-P2O5,具有与骨骼键合的能力。
陶瓷材料最大的弱点是性脆,韧性不足,这就严重影响了它作为人工人体器官的推广应用。陶瓷材料要在生物工程中占有地位,必须考虑解决其脆性问题。
无机非金属材料纳米陶瓷
从陶瓷材料发展的历史来看,经历了三次飞跃。由陶器进入瓷器这是第一次飞跃;由传统陶瓷发展到精细陶瓷是第二次飞跃,在这个期间,不论是原材料,还是制备工艺、产品性能和应用等许多方面都有长足的进展和提高,然而对于陶瓷材料的致命弱点──脆性问题没有得到根本的解决。精细陶瓷粉体的颗粒较大,属微米级(10 m),有人用新的制备方法把陶瓷粉体的颗粒加工到纳米级
(10 m),用这种超细微粉体粒子来制造陶瓷材料,得到新一代纳米陶瓷,这是陶瓷材料的第三次飞跃。纳米陶瓷具有延性,有的甚至出现超塑性。如室温下合成的TiO2陶瓷,它可以弯曲,其塑性变形高达100%,韧性极好。因此人们寄希望于发展纳米技术去解决陶瓷材料的脆性问题。纳米陶瓷被称为21世纪陶瓷。
无机非金属材料发展历史
人们用来制作工具的天然石材是最早的无机非金属材料。在公元前6000~前5000年发明了原始陶器。中国商代(约公元前17世纪初~约前11世纪)有了原始瓷器,并出
中国古代的陶瓷艺术
现了上釉陶器。以后为了满足宫廷观赏及民间日用、建筑的需要,陶瓷的生产技术不断发展。(东汉时期)的是迄今发现的最早瓷器。陶器的出现促进了人类进入金属时代,中国夏代(约公元前22世纪末至约前21世纪初~约前17世纪初)炼铜用的陶质炼锅,是最早的耐火材料。铁的熔炼温度远高于铜,故铁器时代的耐火材料相应地也有很大发展。18世纪以后钢铁工业的兴起,促进耐火材料向多品种、耐高温、耐腐 蚀方向发展。公元前3700年,就开始有简单的玻璃珠作装 饰品。
公元前 1000年前,也有了白色穿孔的玻璃珠。公元初期已能生产多种形式的玻璃制 品。年间玻璃制造技术趋于成熟,的成为玻璃工业中心。1600年后玻璃工业已遍及世界各地区。公元前3000~前2000年已使用石灰和石膏等。随着建筑业的发展,也获得相应的发展。公元初期有了水硬性石灰,火山灰,1700年以后制成水硬性石灰和水泥。1824年J.阿斯普丁发明水泥。上述陶瓷、耐火材料、玻璃、水泥等的主要成分均为硅酸盐,属于典型的硅酸
建筑材料——水泥
盐材料。 18世纪工业革命以后,随着建筑、机械、钢铁、运输等工业的兴起,无机非金属 材料有了较快的发展,出现了、、、、化学仪器玻璃、、和用的耐火材料以及快硬早强等性能优异的水泥。同时,发展了研磨材料、碳素及制品、等。
20世纪以来,随着电子技术、航天、能源、计算机、通信、、、光电子学、 和环境保护等新技术的兴起,对材料提出了更 高的要求,促进了特种无机非金属材料的迅速发展。30~40年代出现了高频 绝缘陶瓷、和电陶瓷、(又称磁性瓷)和热敏电阻陶瓷等。50~60年代开发了碳化硅和氮化硅等、氧化铝、β-氧化铝、气敏和等。至今,又出现了、、、电子发射及高温超导等各种新型。
无机非金属材料材料特性
普通无机非的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。
无机非金属材料用作电子器件
特种无机非金属材料的特点是:①各具特色。例如:高温氧化物等的高温抗氧化特性;氧化铝、的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象。例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不同性质的材料经复合而构成复合材料。例如:金属陶瓷、高温无机涂层,以及用无机纤维、等增强的材料。
无机非金属材料生产工艺
普通无机非金属材料的生产是采用天然矿石作原料。经过粉碎、配料、混合等工序,成型(、等)或不成型(、等),在高温下煅烧成多晶态(水泥、陶瓷等)或非晶态(玻璃、等),再经过进一步的加工如粉磨(水泥)、上釉彩饰(陶瓷)、成型后退火(玻璃、铸石等),得到粉状或块状的制品。
特种无机非金属材料的原料多采用高纯、微细的人工粉料。单晶体材料用焰融、、、气相及高压合成等方法制造。多晶体材料用、、、、或等方法成型后再煅烧,或用热压、高温等静压等烧结工艺,或用水热合成、超高压合成或熔体晶化等方法制造粉状、块状或薄膜状的制品。用高温熔融、熔体凝固、喷涂、拉丝或喷吹等方法制成块状、或状的制品。
无机非金属材料展望
未来科学技术的发展,对各种无机非金属材料,尤其是对特种新型材料提出更多更高的要求。材料学科有广阔的发展前景,、定向结晶材料、增韧陶瓷以及各种类型的表面处理和涂层的使用,将使材料的效能得到更大发挥。由于对研究的日益深入,各种精密测试分析技术的发展,将有助于按预定性能设计材料的原子或分子组成及结构形态的早日实现。
《新材料新装饰》 -2013年4期
《城市建设理论研究(电子版)》 -2013年12期
《高电压技术》 2007年7期
《稀有金属材料与工程》 2007年z3期
《科技创新导报》 -2013年19期
本词条认证专家为
教授级高工
中国石化上海石油化工研究院
科普中国百科科学词条编写与应用工作项目
中国化工学会成立于1922年4...
提供资源类型:内容
清除历史记录关闭豆丁微信公众号
君,已阅读到文档的结尾了呢~~
陶瓷基复合材料综述,陶瓷基复合材料,陶瓷基复合材料论文,陶瓷基复合材料的应用,陶瓷基复合材料ppt,金属基陶瓷复合材料,陶瓷基复合材料 招聘,陶瓷基复合材料 公司,陶瓷基复合材料 日本,复合材料综述
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
陶瓷基复合材料综述
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口碳纤维及其复合材料_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
赠送免券下载特权
10W篇文档免费专享
部分付费文档8折起
每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
碳纤维及其复合材料
阅读已结束,下载本文需要
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,同时保存到云知识,更方便管理
加入VIP
还剩8页未读,
定制HR最喜欢的简历
你可能喜欢什么是复合材料?_百度知道
什么是复合材料?
什么是复合材料?
我有更好的答案
  复合材料 是一种混合物。  复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:  ①纤维增强复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。  ②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。  ③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。  ④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。  复合材料主要可分为结构复合材料和功能复合材料两大类。  结构复合材料是作为承力结构使用的材料,基本上由能承受载荷的增强体组元与能连接增强体成为整体材料同时又起传递力作用的基体组元构成。增强体包括各种玻璃、陶瓷、碳素、高聚物、金属以及天然纤维、织物、晶须、片材和颗粒等,基体则有高聚物(树脂)、金属、陶瓷、玻璃、碳和水泥等。由不同的增强体和不同基体即可组成名目繁多的结构复合材料,并以所用的基体来命名,如高聚物(树脂)基复合材料等。结构复合材料的特点是可根据材料在使用中受力的要求进行组元选材设计,更重要是还可进行复合结构设计,即增强体排布设计,能合理地满足需要并节约用材。  功能复合材料一般由功能体组元和基体组元组成,基体不仅起到构成整体的作用,而且能产生协同或加强功能的作用。功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。
加固公司技术员
  复合材料目录[隐藏]  概念  分类  性能  成型方法  应用  江苏新型复合材料产业园  复合材料  [编辑本段]概念  复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。  复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。  [编辑本段]分类  复合材料是一种混合物。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。  60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。  [编辑本段]性能  复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。  [编辑本段]成型方法  复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成复合材料电缆支架型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。  [编辑本段]应用  复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。  复合材料的发展和应用  复合材料电缆支架复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。  随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。  从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。  另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。  树脂基复合材料的增强材料  树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。  1、玻璃纤维  目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。  2、碳纤维  碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。  3、芳纶纤维  20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。  4、超高分子量聚乙烯纤维  超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。  5、热固性树脂基复合材料  热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。  1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。  热塑性树脂基复合材料  热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。  高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。  滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。  云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。  我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。  我国复合材料的发展潜力和热点  我国复合材料发展潜力很大,但须处理好以下热点问题。  1、复合材料创新  复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。  2、聚丙烯腈基纤维发展  我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。  3、玻璃纤维结构调整  我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。  4、开发能源、交通用复合材料市场  一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。  5、纤维复合材料基础设施应用  国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。  6、复合材料综合处理与再生  重点发展物理回收(粉碎回收)、化学回收(热裂解)和能量回收,加强技术路线、综合处理技术研究,示范生产线建设,再生利用研究,大力拓展再生利用材料在石膏中的应用、在拉挤制品中的应用以及在SMC/BMC模压制品中的应用和典型产品中的应用。  21世纪的高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。以开发高刚度、高强度、高湿热环境下使用的复合材料为重点,构筑材料、成型加工、设计、检查一体化的材料系统。组织系统上将是联盟和集团化,这将更充分的利用各方面的资源(技术资源、物质资源),紧密联系各方面的优势,以推动复合材料工业的进一步发展。  GPO-3介绍  GPO-3层压板是由无碱玻璃纤维毡板浸以不饱和聚酯树脂糊,并添加相应的添加剂经热压而成的硬性板状绝缘材料。  GPO-3,又称 UPGM-203 ,指的是不饱和聚酯玻璃纤维毡板材料,机械和电气用,高湿下电气性能好,中等温度下机械性能好,具有阻燃性,耐电弧和耐抗漏电痕迹性能佳。  规格:0.8~100mm mm,mm  颜色:红色、白色、棕色、棕红色等  GPO-3层压板应用  在断路器中应用: 框架式断路器:安全挡板、安全遮板、间隔衬垫、相间隔板等。  塑壳式断路器中的应用:相间隔板、灭弧室隔弧板等。  在电机马达中应用: 电机电枢部件,活动盖板,槽楔定子、定垫片,薄垫片,碳刷座等  在开关设备中应用:隔板系统中的前端、后端、上端、底端、相间隔板等 其他应用:耐弧结构件  [编辑本段]江苏新型复合材料产业园  日前,经江苏外经贸厅批准,“江苏新型复合材料产业园”在钟楼经济开发区内成立。这是江苏省首家获批成立的新型复合材料产业园。 复合材料是钟楼经济开发区的支柱产业,近年来,随着优势产业集聚的深入推进,开发区注重引进科技含量和产品附加值高的新型复合材料产业项目。园区目前已有复合材料类生产企业20多家,2007年实现总产值70亿元,占开发区企业总产值的47%。一批以软塑包装复合材料、纳米复合材料、新型建材复合材料和电工绝缘复合材料为主的企业集群已经形成,钟楼开发区正在成为全国重要的新型复合材料制造、出口和配套基地。  新型复合材料产业园成立后,将强化复合材料产业在钟楼经济开发区的集约发展,集成有效的科技资源、产业优势和产品优势,发挥集聚化的整体效应,形成具有较强技术和产业优势的企业群体,推动开发区产业的升级和土地、资金、劳动力、信息、技术等资源的优化配置,降低生产经营成本,促进开发区整体竞争能力跃上一个新台阶。  纳米复合材料  复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米 聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。  在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。  碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材料,具有许多特别优秀的性能。我们在碳纳米管取得的研究成果主要包括:  1)大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。  2)开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。  3)开发了制造具有软基底定向碳纳米管膜的技术。  钨铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨-铜复合粉体,目前正在加紧其产业化应用研究。
本回答被提问者采纳
复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
复合材料在很多领域都发挥了很大的作用,代替了很多传统的材料。
复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。
复合材料 按结构特点又分为:
①纤维增强复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑
料、纤维增强金属等。
②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;
芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。
③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。
④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与
普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有
特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超
混杂复合材料。
复合材料的主要应用领域有:
①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机
机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭
的 壳体、发动机壳体、航天飞机结构件等。
②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳
性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传
动轴、发动机架及其内部构件。
③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材
料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。
④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造
医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,
生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运
动器件和用作建筑材料等。
以一种材料为基体,另一种材料为增强体组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
容易理解的表达就是:几种元素的东西组合起来形成新的元素!就叫做复合!
其他2条回答
为您推荐:
其他类似问题
您可能关注的内容
复合材料的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。}

我要回帖

更多关于 金属陶瓷复合材料 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信