胜利测量电感 电容表感测:你应该选择哪个架构

电容感测:你应该选择哪个架构?-微众圈
微众圈,我的微信生活圈!
电容感测:你应该选择哪个架构?
摘自公众号:发布时间: 8:38:05
电容感测:你应该选择哪个架构?电容感测在很多应用中大展拳脚,从接近度检测和手势识别,到液面感测。无论是哪种应用,电容感测的决定性因素都是根据一个特定的基准来感测传感器电容值变化的能力。根据特定应用和系统要求的不同,你也许需要不同的方法来测量这个变化。在这篇博文章,我将介绍2个特定的架构类型―开关电容器电路和电感器-电容器LC谐振槽路―这是当前一种用于电容感测的电路。开关电容器电路图1显示的是针对电容感测的经简化电路,它以电荷转移为基础;电路中的开关执行采样保持运行。在采样之间,传感器电感器上的电荷的变化会导致输出电压的变化,然后,通过测量电压的变化量可以确定电容值的变化。图1:支持采样保持的经简化开关电容器电路的电路原理图要对传感器上的电荷进行采样,通过闭合开关S1,并且打开开关S2和S3,使传感器电容器,CS,充满电。一旦CS被充满,S1和S3将打开,而S2将闭合。这就使得传感器电容器上累积的电荷被直接传输到保持电容器,CH中。一旦CH被充满,S1和S2将打开,而S3将闭合。这就强制地将传感器电容器的放电(为下一次采样做准备)与输出电压电势的缓冲(由CH保持稳定)隔离开来。这是一款广泛用于电容感测的架构,其原因在于这个架构由开关操作,所以其采样状态和保持状态全都是去耦合的。然而,这个技术也存在一些缺点,那就是它更容易受到噪声的影响。由于这个传感器具有宽频带特点,来自于外部干扰源的噪声―即使这个干扰源的运行频率不同于工作频率―仍然会出现问题。你也许需要用于滤波的外部电路,而这将会增加系统的复杂程度,并且在滤波器引入明显的寄生电容时,这有可能降低灵敏度。然而,如果系统并未暴露在宽频带噪声中,这个架构也许就足够用了。LC谐振槽路图2中显示的LC谐振器是电容感测中使用的另外一个传感器架构。方程式1确定了LC谐振槽路的振荡频率。图2:简单LC谐振槽路的电路原理图 (1)请看一看方程式1,很明显,振荡频率只取决于谐振槽路的总电感和总电容值。因此,如果电容感测的目的在于测量电容值的变化,那么谐振槽路的总电感是固定的,而谐振器的电容组件形成了传感器。由于电容值会随着传感器对目标的响应而发生变化,所以振荡频率将会改变。然后,谐振回路频率的变化成为你的测量值,以确定测得的电容值变化。图3:LC谐振器特性曲线虽然LC谐振槽路的架构很简单,不过,这个电路所具有的几个主要优势使其成为电容感测领域内的一个相对新型的方法。首先,由于其内在的窄带特点(如图3中所示),一个LC谐振器提供出色的电磁干扰 (EMI) 抗扰性。此外,如果在任何已知的频率上的确存在噪声源,有可能在不使用外部滤波器的情况下,通过移动传感器的运行频率来过滤掉这些噪声源。这将有助于增加系统的灵敏度(如果应用需要高灵敏度的话),并且减少其复杂程度。可以用以下两款芯片实现电容感测:FDC1004是TI的开关电容器架构版本,而FDC221x是TI的LC谐振槽路架构版本。 (EETOP TI社区) 关注微信号eetop-1,回复以下关键词,阅读相关文章电源选择 LDO 的方法 LDO的ESR电流型BUCK传递函数(推导、分析)浅谈LDO和DC/DC电源的区别如何借助LDO提高降压转换器的轻负载效率LDO在IoT中省电的两种方法运放1 , 运放2运放并联的可行性运放设计:开环思考闭环仿真输入偏置电流和失调电流运放参数详解和分析等等。。。回复如下关键词,查看 ADC 相关文章:ADC01:ADC精度(I):精度与分辨率是一回事吗?ADC02:ADC精度(II):解释总不可调整误差ADC03:12bit 100MHz pipelined ADC设计(IC设计)ADC04:SAR ADC响应时间 vs. 市场营销: 有趣的类比ADC05:驱动 ADC:放大器还是平衡-非平衡变压器?ADC06:ADC版图布线小结ADC07:SAR ADC PCB布局布线:参考路径ADC08:SAR ADC 的输入注意事项ADC09:改善ADC系统电源抑制状况的四种方法ADC10:超越第一奈奎斯特区域回复如下关键词,查看 DAC 相关文章:DAC01 - DAC基础知识连载-1. 开篇DAC02 - DAC基础知识连载-2.电阻串理论DAC03 - DAC基础知识连载-3.电阻器梯形结构DAC04 - DAC基础知识连载-4.追求完美DAC05 - DAC基础知识连载-5.静态规范与线性度DAC06 - DAC基础知识连载-6.这些干扰是怎么回事?DAC07 - DAC基础知识连载-7.消除干扰DAC08 - RF-DAC多频带发射器线性评估DAC09 - 以DAC为例介绍SpectreVerilog数模混合电路仿真方法微信号:eetop-1长按二维码,自动识别 关注我们 业务联系请加个人微信号:jack_eetop 或 QQ:全力打造中国电子工程师微信第一品牌!点击左下角查看更多相关文章
微信号:eetop-1 > 电容感测
电容感测资讯
电容感测资料下载
电容感测帖子
电容感测DIY创意
IEEE 802.11ac,是一个802.11无线局域网(WLAN)通信标准,它通过5GHz频带(也是其得名原因)进行通信。理论上,它能够提供最多1Gbps带宽进行多站式无线局域网通信,或是最少500Mbps的单一连接传输带宽。
是德科技公司(NYSE:KEYS)是全球领先的电子测量公司,通过在无线、模块化和软件解决方案等领域的不断创新,为您提供全新的测量体验。
太阳能逆变器
太阳能逆变器
逆变器又称电源调整器、功率调节器,是光伏系统必不可少的一部分。光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出。
微带滤波器
微带滤波器
电子测量仪器
电子测量仪器
卡尔曼滤波器
卡尔曼滤波器
混合域示波器
混合域示波器
关注此标签的用户(0人)
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-开关电容器
电容感测:你应该选择哪个架构?
  电容感测在很多应用中大展拳脚,从接近度检测和手势识别,到液面感测。无论是哪种应用,电容感测的决定性因素都是根据一个特定的基准来感测传感器电容值变化的能力。根据特定应用和系统要求的不同,你也许需要不同的方法来测量这个变化。
  在这篇文章,将介绍2个特定的架构类型&开关电容器电路和电感器-电容器LC谐振槽路&这是当前一种用于电容感测的电路。
  开关电容器电路
  图1显示的是针对电容感测的经简化电路,它以电荷转移为基础;电路中的开关执行采样保持运行。在采样之间,传感器电感器上的电荷的变化会导致输出电压的变化,然后,通过测量电压的变化量可以确定电容值的变化。
  图1:支持采样保持的经简化开关电容器电路的电路原理图
  要对传感器上的电荷进行采样,通过闭合开关S1,并且打开开关S2和S3,使传感器电容器,CS,充满电。一旦CS被充满,S1和S3将打开,而S2将闭合。这就使得传感器电容器上累积的电荷被直接传输到保持电容器,CH中。一旦CH被充满,S1和S2将打开,而S3将闭合。这就强制地将传感器电容器的放电(为下一次采样做准备)与输出电压电势的缓冲(由CH保持稳定)隔离开来。
  这是一款广泛用于电容感测的架构,其原因在于这个架构由开关操作,所以其采样状态和保持状态全都是去耦合的。然而,这个技术也存在一些缺点,那就是它更容易受到噪声的影响。由于这个传感器具有宽频带特点,来自于外部干扰源的噪声&即使这个干扰源的运行频率不同于工作频率& 仍然会出现问题。你也许需要用于滤波的外部电路,而这将会增加系统的复杂程度,并且在滤波器引入明显的寄生电容时,这有可能降低灵敏度。然而,如果系统并未暴露在宽频带噪声中,这个架构也许就足够用了。
  LC谐振槽路
  图2中显示的LC谐振器是电容感测中使用的另外一个传感器架构。方程式1确定了LC谐振槽路的振荡频率。
  图2:简单LC谐振槽路的电路原理图
  请看一看方程式1,很明显,振荡频率只取决于谐振槽路的总电感和总电容值。因此,如果电容感测的目的在于测量电容值的变化,那么谐振槽路的总电感是固定的,而谐振器的电容组件形成了传感器。由于电容值会随着传感器对目标的响应而发生变化,所以振荡频率将会改变。然后,谐振回路频率的变化成为你的测量值,以确定测得的电容值变化。
  图3:LC谐振器特性曲线
  虽然LC谐振槽路的架构很简单,不过,这个电路所具有的几个主要优势使其成为电容感测领域内的一个相对新型的方法。首先,由于其内在的窄带特点(如图3中所示),一个LC谐振器提供出色的电磁干扰 (EMI) 抗扰性。此外,如果在任何已知的频率上的确存在噪声源,有可能在不使用外部滤波器的情况下,通过移动传感器的运行频率来过滤掉这些噪声源。这将有助于增加系统的灵敏度(如果应用需要高灵敏度的话),并且减少其复杂程度。
关注电子发烧友微信
有趣有料的资讯及技术干货
下载发烧友APP
打造属于您的人脉电子圈
关注发烧友课堂
锁定最新课程活动及技术直播
你在传感器系统中是否遇到过电容测量值的波动呢?对于这些测量值的波动有几种解释,但是最常见的根本原因是...
汽车电子应用领域对接近检测传感器的需求一直在稳定攀升,这种传感器无需物理接触,就能够可靠地检测出靠近...
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-开关电容器
电容感测:你应该选择哪个架构?
  电容感测在很多应用中大展拳脚,从接近度检测和手势识别,到液面感测。无论是哪种应用,电容感测的决定性因素都是根据一个特定的基准来感测传感器电容值变化的能力。根据特定应用和系统要求的不同,你也许需要不同的方法来测量这个变化。
  在这篇文章,将介绍2个特定的架构类型&开关电容器电路和电感器-电容器LC谐振槽路&这是当前一种用于电容感测的电路。
  开关电容器电路
  图1显示的是针对电容感测的经简化电路,它以电荷转移为基础;电路中的开关执行采样保持运行。在采样之间,传感器电感器上的电荷的变化会导致输出电压的变化,然后,通过测量电压的变化量可以确定电容值的变化。
  图1:支持采样保持的经简化开关电容器电路的电路原理图
  要对传感器上的电荷进行采样,通过闭合开关S1,并且打开开关S2和S3,使传感器电容器,CS,充满电。一旦CS被充满,S1和S3将打开,而S2将闭合。这就使得传感器电容器上累积的电荷被直接传输到保持电容器,CH中。一旦CH被充满,S1和S2将打开,而S3将闭合。这就强制地将传感器电容器的放电(为下一次采样做准备)与输出电压电势的缓冲(由CH保持稳定)隔离开来。
  这是一款广泛用于电容感测的架构,其原因在于这个架构由开关操作,所以其采样状态和保持状态全都是去耦合的。然而,这个技术也存在一些缺点,那就是它更容易受到噪声的影响。由于这个传感器具有宽频带特点,来自于外部干扰源的噪声&即使这个干扰源的运行频率不同于工作频率& 仍然会出现问题。你也许需要用于滤波的外部电路,而这将会增加系统的复杂程度,并且在滤波器引入明显的寄生电容时,这有可能降低灵敏度。然而,如果系统并未暴露在宽频带噪声中,这个架构也许就足够用了。
  LC谐振槽路
  图2中显示的LC谐振器是电容感测中使用的另外一个传感器架构。方程式1确定了LC谐振槽路的振荡频率。
  图2:简单LC谐振槽路的电路原理图
  请看一看方程式1,很明显,振荡频率只取决于谐振槽路的总电感和总电容值。因此,如果电容感测的目的在于测量电容值的变化,那么谐振槽路的总电感是固定的,而谐振器的电容组件形成了传感器。由于电容值会随着传感器对目标的响应而发生变化,所以振荡频率将会改变。然后,谐振回路频率的变化成为你的测量值,以确定测得的电容值变化。
  图3:LC谐振器特性曲线
  虽然LC谐振槽路的架构很简单,不过,这个电路所具有的几个主要优势使其成为电容感测领域内的一个相对新型的方法。首先,由于其内在的窄带特点(如图3中所示),一个LC谐振器提供出色的电磁干扰 (EMI) 抗扰性。此外,如果在任何已知的频率上的确存在噪声源,有可能在不使用外部滤波器的情况下,通过移动传感器的运行频率来过滤掉这些噪声源。这将有助于增加系统的灵敏度(如果应用需要高灵敏度的话),并且减少其复杂程度。
关注电子发烧友微信
有趣有料的资讯及技术干货
下载发烧友APP
打造属于您的人脉电子圈
关注发烧友课堂
锁定最新课程活动及技术直播
你在传感器系统中是否遇到过电容测量值的波动呢?对于这些测量值的波动有几种解释,但是最常见的根本原因是...
汽车电子应用领域对接近检测传感器的需求一直在稳定攀升,这种传感器无需物理接触,就能够可靠地检测出靠近...
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-电容感测:你应该选择哪个架构?-综合电路图-电子产品世界
-&-&-&电容感测:你应该选择哪个架构?
电容感测:你应该选择哪个架构?
电容感测在很多应用中大展拳脚,从接近度检测和手势识别,到液面感测。无论是哪种应用,电容感测的决定性因素都是根据一个特定的基准来感测传感器电容值变化的能力。根据特定应用和系统要求的不同,你也许需要不同的方法来测量这个变化。在这篇博文章,我将介绍2个特定的架构类型—开关电容器电路和电感器-电容器LC谐振槽路—这是当前一种用于电容感测的电路。
开关电容器电路
图1显示的是针对电容感测的经简化电路,它以电荷转移为基础;电路中的开关执行采样保持运行。在采样之间,传感器电感器上的电荷的变化会导致输出电压的变化,然后,通过测量电压的变化量可以确定电容值的变化。
图1:支持采样保持的经简化开关电容器电路的电路原理图
要对传感器上的电荷进行采样,通过闭合开关S1,并且打开开关S2和S3,使传感器电容器,CS,充满电。一旦CS被充满,S1和S3将打开,而S2将闭合。这就使得传感器电容器上累积的电荷被直接传输到保持电容器,CH中。一旦CH被充满,S1和S2将打开,而S3将闭合。这就强制地将传感器电容器的放电(为下一次采样做准备)与输出电压电势的缓冲(由CH保持稳定)隔离开来。
这是一款广泛用于电容感测的架构,其原因在于这个架构由开关操作,所以其采样状态和保持状态全都是去耦合的。然而,这个技术也存在一些缺点,那就是它更容易受到噪声的影响。由于这个传感器具有宽频带特点,来自于外部干扰源的噪声—即使这个干扰源的运行频率不同于工作频率—仍然会出现问题。你也许需要用于滤波的外部电路,而这将会增加系统的复杂程度,并且在滤波器引入明显的寄生电容时,这有可能降低灵敏度。然而,如果系统并未暴露在宽频带噪声中,这个架构也许就足够用了。
LC谐振槽路
图2中显示的LC谐振器是电容感测中使用的另外一个传感器架构。方程式1确定了LC谐振槽路的振荡频率。
图2:简单LC谐振槽路的电路原理图
请看一看方程式1,很明显,振荡频率只取决于谐振槽路的总电感和总电容值。因此,如果电容感测的目的在于测量电容值的变化,那么谐振槽路的总电感是固定的,而谐振器的电容组件形成了传感器。由于电容值会随着传感器对目标的响应而发生变化,所以振荡频率将会改变。然后,谐振回路频率的变化成为你的测量值,以确定测得的电容值变化。
图3:LC谐振器特性曲线
虽然LC谐振槽路的架构很简单,不过,这个电路所具有的几个主要优势使其成为电容感测领域内的一个相对新型的方法。首先,由于其内在的窄带特点(如图3中所示),一个LC谐振器提供出色的电磁干扰 (EMI) 抗扰性。此外,如果在任何已知的频率上的确存在噪声源,有可能在不使用外部滤波器的情况下,通过移动传感器的运行频率来过滤掉这些噪声源。这将有助于增加系统的灵敏度(如果应用需要高灵敏度的话),并且减少其复杂程度。
分享给小伙伴们:
阅读:13745
阅读:21196
阅读:17295
阅读:23230
阅读:17292
微信公众号二
微信公众号一}

我要回帖

更多关于 三相电容电感测试仪 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信