游戏进去后全是红的。电脑右下角红色喇叭显示some objects render at wrong depth Some effects render incorrectly

LOL 进游戏读条之后画面就变成红色 右下角出现英文 请问怎么解决_百度知道
LOL 进游戏读条之后画面就变成红色 右下角出现英文 请问怎么解决
刚装的电脑W7系统的
别的画面都好好的 就是进到游戏读条开始之后才变色 右下角出现英文
知道怎么调的大神告诉下
就是上面图这个样子的
这个图不是我的 但是问题一样
这就是右下角的英文
league of legends Rating: fair Some objects render...
我有更好的答案
采纳率:7%
我也遇到同样的问题了。重装下显卡驱动就没事了
我也遇到过这种情况,1. 说明你电脑原因 2. 你可以把游戏删除彻底然后重新下载. 顺便问一下,你是哪个区的,我现在也在玩LOL .
很高兴为你解答,
我想知道你怎么解决的,电脑是今天刚配的
原来的一台没有问题 新的进游戏有问题电一的
ctrl+Alt+insert
朋友你的问题解决了吗?我也是和你出现了同样的问题,
重启!!!
重启过了没有用。
你以前玩有这种现象吗?
其他4条回答
为您推荐:
其他类似问题
您可能关注的内容
lol的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。Culling is an optimization that does not render polygons facing away from the viewer. All polygons have a front and a back side. Culling makes use of the fact that mos if you have a cube, you will never see the sides facing away from you (there is always a side facing you in front of it) so we don’t need to draw the sides facing away. Hence the term: Backface culling.
The other feature that makes rendering looks correct is Depth testing. Depth testing makes sure that only the closest surfaces objects are drawn in a scene.
Cull Back | Front | Off
Controls which sides of polygons should be culled (not drawn)
Back Don’t render polygons facing away from the viewer (default).
Front Don’t render polygons facing towards the viewer. Used for turning objects inside-out.
Off Disables culling - all faces are drawn. Used for special effects.
ZWrite On | Off
Controls whether pixels from this object are written to the depth buffer (default is On). If you’re drawng solid objects, leave this on. If you’re drawing semitransparent effects, switch to ZWrite Off. For more details read below.
ZTest Less | Greater | LEqual | GEqual | Equal | NotEqual | Always
How should depth testing be performed. Default is LEqual (draw objects in from or at the distance hide objects behind them).
Offset Factor, Units
Allows you specify a depth offset with two parameters. factor and units. Factor scales the maximum Z slope, with respect to X or Y of the polygon, and units scale the minimum resolvable depth buffer value. This allows you to force one polygon to be drawn on top of another although they are actually in the same position. For example Offset 0, -1 pulls the polygon closer to the camera ignoring the polygon’s slope, whereas Offset -1, -1 will pull the polygon even closer when looking at a grazing angle.
This object will render only the backfaces of an object:
Shader "Show Insides" {
SubShader {
Material {
Diffuse (1,1,1,1)
Lighting On
Cull Front
Try to apply it to a cube, and notice how the geometry feels all wrong when you orbit around it. This is because you’re only seeing the inside parts of the cube.
Transparent shader with depth writes
do not write into the depth buffer. However, this can create draw order problems, especially with complex non-convex meshes. If you want to fade in & out meshes like that, then using a shader that fills in the depth buffer before rendering transparency might be useful.
Se left: standard Transparent/D right: shader that writes to depth buffer.
Shader "Transparent/Diffuse ZWrite" {
Properties {
_Color ("Main Color", Color) = (1,1,1,1)
_MainTex ("Base (RGB) Trans (A)", 2D) = "white" {}
SubShader {
Tags {"Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent"}
// extra pass that renders to depth buffer only
ColorMask 0
// paste in forward rendering passes from Transparent/Diffuse
UsePass "Transparent/Diffuse/FORWARD"
Fallback "Transparent/VertexLit"
Debugging Normals
The next one first we render the object with normal vertex lighting, then we render the backfaces in bright pink. This has the effects of highlighting anywhere your normals need to be flipped. If you see physically-controlled objects getting ‘sucked in’ by any meshes, try to assign this shader to them. If any pink parts are visible, these parts will pull in anything unfortunate enough to touch it.
Here we go:
Shader "Reveal Backfaces" {
Properties {
_MainTex ("Base (RGB)", 2D) = "white" { }
SubShader {
// Render the front-facing parts of the object.
// We use a simple white material, and apply the main texture.
Material {
Diffuse (1,1,1,1)
Lighting On
SetTexture [_MainTex] {
Combine Primary * Texture
// Now we render the back-facing triangles in the most
// irritating color in the world: BRIGHT PINK!
Color (1,0,1,1)
Cull Front
Glass Culling
Controlling Culling is useful for more than debugging backfaces. If you have transparent objects, you quite often want to show the backfacing side of an object. If you render without any culling (Cull Off), you’ll most likely have some rear faces overlapping some of the front faces.
Here is a simple shader that will work for convex objects (spheres, cubes, car windscreens).
Shader "Simple Glass" {
Properties {
_Color ("Main Color", Color) = (1,1,1,0)
_SpecColor ("Spec Color", Color) = (1,1,1,1)
_Emission ("Emmisive Color", Color) = (0,0,0,0)
_Shininess ("Shininess", Range (0.01, 1)) = 0.7
_MainTex ("Base (RGB)", 2D) = "white" { }
SubShader {
// We use the material in many passes by defining them in the subshader.
// Anything defined here becomes default values for all contained passes.
Material {
Diffuse [_Color]
Ambient [_Color]
Shininess [_Shininess]
Specular [_SpecColor]
Emission [_Emission]
Lighting On
SeparateSpecular On
// Set up alpha blending
Blend SrcAlpha OneMinusSrcAlpha
// Render the back facing parts of the object.
// If the object is convex, these will always be further away
// than the front-faces.
Cull Front
SetTexture [_MainTex] {
Combine Primary * Texture
// Render the parts of the object facing us.
// If the object is convex, these will be closer than the
// back-faces.
SetTexture [_MainTex] {
Combine Primary * Texture
Did you find this page useful? Please give it a rating:
ShaderLab: Pass
ShaderLab: Blending重要:在目前市面上常见的游戏引擎中,主要采用以下三种灯光实现方式:
顶点照明渲染路径细节&Vertex Lit Rendering Path Details
正向渲染路径细节&Forward Rendering Path Details
延迟光照渲染路径的细节&Deferred Lighting Rendering Path Details
以unity3d为例,以下将详细讲解三种灯光渲染方式的实现、原理及缺陷。
顶点照明渲染路径细节&Vertex Lit Rendering Path Details
Vertex Lit path generally renders each object in one pass, with lighting from all lights calculated at object vertices.
顶点照明渲染路径通常在一个通道中渲染物体,所有光源的照明都是在物体的顶点上进行计算的。
It's the fastest rendering path and has widest hardware support (however, keep in mind: it does not work on consoles).
顶点照明渲染路径是最快的渲染路径并且有最广泛的硬件支持(然而,请记住:它无法工作在游戏机上)。
Since all lighting is calculated at vertex level, this rendering path does not support most of per-pixel effects: shadows, normal mapping, light cookies, highly detailed specular highlights are not supported.
由于所有的光照都是在顶点层级上计算的,此渲染路径不支持大部分的逐像素渲染效果:如,阴影、法线贴图、灯光遮罩、高精度的高光。
正向渲染路径细节&Forward Rendering Path Details
Forward Rendering path renders each object in one or more passes, depending on lights that affect the object. Lights themselves are also treated differently by Forward Rendering, depending on their settings and intensity.
根据影响物体的光源的不同,正向渲染路径用单个或多个通道来渲染物体。在正向渲染中,光源本身也会根据他们的设置和强度受到不同的对待。
Implementation Details 实现细节
In Forward Rendering, some number of brightest lights that affect each object are rendered in fully per-pixel lit mode. Then, up to 4 point lights are calculated per-vertex. The other lights are computed as Spherical Harmonics (SH), which is much faster but is only an approximation. Whether a light will be per-pixel light or not is dependent on this:
在正向渲染中,影响物体的最亮的几个光源使用逐像素光照模式。接下来,最多有4个点光源会以逐顶点渲染的方式被计算。其他光源将以球面调和(Spherical Harmonics)的方式进行计算,球面调和技术计算很快但只能得到近似值。根据以下的规则判断一个光源是否为逐像素光源:
Lights that have their Render Mode set to&Not Important&are always per-vertex or SH.&
渲染模式被设置为不重要(Not Important)的光源以逐顶点或球面调和的方式进行计算
directional light is always per-pixel.&
最亮的方向光源为像素光源
that have their Render Mode set to&Important&are
always per-pixel.&
渲染模式被设置重要(Important)的光源为像素光源
the above results in less lights than current&Pixel
Light Count&, then more lights are rendered
per-pixel, in order of decreasing brightness.&
如根据以上规则得到的像素光源数量小于质量设置中的像素光源数量(Pixel Light Count),为了减少亮度,会有更多的光源以逐像素的方式进行渲染
of each object happens as follows:
用以下的方法渲染每个物体:
Pass applies one per-pixel directional light and all per-vertex/SH lights.&
基础通道渲染一个逐像素方向光和所有的逐顶点/球面调和光。
per-pixel lights are rendered in additional passes, one pass for each
其他逐像素光在附加的通道中进行渲染,每个光源都需要一个通道
example, if there is some object that's affected by a number of lights (a
circle in a picture below, affected by lights A to H):
例如,如果有一个物体受到若干光源的影响(下图中的圆圈,受到光源A到H的影响)
assume lights A to H have the same color & intensity, all all of them have
Auto rendering mode, so they would be sorted in exactly this order for this
object. The brightest lights will be rendered in per-pixel lit mode (A to D),
then up to 4 lights in per-vertex lit mode (D to G), and finally the rest of
lights in SH (G to H):
假设光源A到H都有相同的颜色和强度,且它们的渲染模式都为自动的(Auto),那么它们严格的按照其名字排序。最亮的光源以逐像素光照模式的方式进行渲染(A到D),然后最多有4个光源以逐顶点光照模式进行渲染(D到G),其他光源以球面调和的方式进行渲染(G到H)。
for example last per-pixel light blends into
per-vertex lit mode so there are less "light popping" as objects and
lights move around.
注意不同的光照组间有重叠,如,最后一个逐像素光源也以逐顶点光照模式的方式渲染,这样能减少当物体和灯光移动时可能出现的"光照跳跃"现象。
Pass 基本通道
pass renders object with one per-pixel directional light and all SH lights.
This pass also adds any lightmaps, ambient and emissive lighting from the
shader. Directional light rendered in this pass can have Shadows. Note that
Lightmapped objects do not get illumination from SH lights.
基础通道用一个逐像素方向光和所有球面调和光渲染物体。此通道还负责渲染着色器中的光照贴图,环境光和自发光。在此通道中渲染的方向光可以产生阴影。需要注意的是,使用了光照贴图的物体不会得到球面调和光的光照。
Additional
Passes 附加通道
Additional
passes are rendered for each additional per-pixel light that affect this
object. Lights in these passes can't have shadows (so in result, Forward
Rendering supports one directional light with shadows).
附加通道用于渲染影响物体的其他逐像素光源。这些通道中渲染的光源无法产生阴影(因此,前向渲染支持一个能产生阴影的方向光)。
Performance
Considerations 性能注意事项
Harmonics lights are&very&fast to render. They have a
tiny cost on the CPU, and are&actually free&for the GPU to apply (that
is, base pass always computes SH but due to the way SH lights work,
the cost is exactly the same no matter how many SH lights are there).
渲染球面调和光很快。它们只花费很少的CPU计算时间,并且实际上无需花费任何GPU计算时间(换言之,基础通道会计算球面调和光照,但由于球面调和光的计算方式,无论有多少球面调和光源,计算它们所花费的时间都是相同的)。
downsides of SH lights are:
球面调和光源的缺点有:
are computed at object's vertices, not pixels. This means they do not
support light Cookies or normal maps.&
它们计算的是物体的顶点而不是像素。这意味着它们不支持投影遮罩和发现贴图。
lighting is very low frequency. You can't have sharp lighting transitions with
SH lights. They are also only affecting the diffuse lighting (too low
frequency for specular highlights).&
球面调和光只有很低的频率。球面调和光不能产生锋利的照明过渡。它们也只会影响散射光照(对高光来说,球面调和光的频率太低了)。
ligh point or spot SH lights close to some surface
will "look wrong".&
球面调和不是局部的,靠近曲面的球面调和点光和聚光可能会"看起来不正确"。
summary, SH lights are often good enough for small dynamic objects.
总的来说,球面调和光的效果对小的动态物体来说已经足够好了。
延迟光照渲染路径的细节&Deferred Lighting Rendering
Path Details
Lighting is rendering path with the most lighting and shadow fidelity:
延迟光照是一种当前最高级的能实现光线和阴影保真的渲染路径
no limit how many lights can affect any object.&
对于能影响任何物体的光线数量没有上限
lights are evaluated per-pixel. Which means that they all interact
properly with normal maps etc.&
完全采用以每像素的方式评估光线,这等于意味着全部将以正常贴图的方式正确的和物体交互
lights can have Cookies.&
所有光线都能拥有信息缓存
lights can have Shadows.&
所有的光线都能产生阴影
Lighting's advantages&延迟光照的优点:
cost is proportional to light size on screen. Does not matter how many
objects it shines on. Small lights = cheap!&
光照的开销与屏幕的光线尺寸成正比,不用担心光线所照射的物品的数量,少量光线
廉价的花费
Consistency.
All lighting for all lights is computed per- there are no lighting
computations that break down on large triangles etc.&
一致性,所有的光线的光照采用按像素为计算分割单位来计算。比如,不会有在大规模三角形情况下光照计算使计算性能发生崩溃的情况发生。
Disadvantages&缺点:
real anti-aliasing support.&
没有实时抗锯齿支持
Lighting can't handle semi-transparent objects. Those are rendered using
Forward Rendering.&
延迟光照不能处理半透明物体,也不能用在哪些使用前向渲染的物体之上
lighting model support (Blinn-Phong). All lighting is computed the same
you can't have drastically different lighting models on different
有限的光照模式支持(Blinn-Phong)。所有光照以同样的方式计算,你不能够在不同的物体上采用完全不同的光照模式
support for "receive shadows" flag and limited support light
Culling Masks.&
没有对接收阴影特征的支持和对光线遮罩剔除有限的支持
Requirements
for Deferred Lighting 延时光照的需求
Requires&Unity Pro.&
需要Unity专业版
card with Shader Model 3.0 (or later), support for Depth render textures
and two-sided stencil buffer. Most graphics cards made after 2004 support
it: GeForce FX and later, Radeon X1300 and later, Intel 965 / GMA X3100
and later.&
显示卡支持Shader Model 3.0(或更高),深度纹理渲染和双面模板缓冲特性。许多2004年后的显卡都支持:如Geforce
Fx或更高,Radeon X1300或更高 Intel 965/ GMA
X3100 或更高
does not work on mobile platforms.&
目前在移动平台不支持。
Performance
Considerations 性能注意事项
of realtime lights in Deferred Lighting is proportional to number of pixels the
and&not&dependent on scene complexity. So
small point or spot lights are very cheap to render. Point or spot lights that
are fully or partially occluded by some scene objects get their pixels skipped
on the GPU, so they are even cheaper.
延迟光照中实时光线的开销和光线照亮的像素值的数量成正比。而不取决于场景的复杂性。微小的点光源和聚光灯光源非常容易渲染。点光源或者完全或者部分被场景物体遮挡的聚光灯光源所照射的像素则被GPU所跳过,因此更加廉价。
course, lights with shadows are much more expensive than lights without
shadows. In Deferred Lighting, shadow casters still need to be rendered once or
more for each shadow-casting light. And the lighting shader that applies
shadows is also more expensive than one without shadows.
当然,拥有阴影的光源比没有阴影的光源要昂贵许多。使用延迟光照,光影投射器仍然需要为每个阴影投射渲染一次或者多次。而且产生阴影的光线着色器也比不产生阴影的光线着色器要昂贵许多。
Implementation
Details 实现细节
When Deferred
Lighting is used, rendering process in Unity happens like this:
当延迟光照生效时,在Unity中发生的渲染过程如下:
Base Pass: objects are
rendered, producing screen-space buffers with depth, normals, and specular
基本渲染:被渲染的对象产生带有深度,法线,和反射量的屏幕空间缓冲
Lighting pass: lighting is
computed using the previous buffers. Lighting is computed into another
screen-space buffer.&
光照渲染:使用上一步的缓冲计算出光照。结果放入另一个屏幕空间缓存
Final pass: objects are
rendered again. They fetch computed lighting, combine it with color textures
and add any ambient/emissive lighting.&
最后渲染:物体再次渲染。取来已经计算好的光线和颜色纹理混合在一起,然后再加上环境光以及散射光照。
with shaders that can't handle Deferred Lighting are rendered after this
process is done, using&&path.
不能采用延迟光照技术的带阴影的物体在延迟光照渲染完后使用前向渲染路径处理。
Pass 基本渲染阶段
pass renders each object once. View space normals and specular power are
rendered into single ARGB32&&(normals in RGB channels, specular power in A). If platform
& hardware supports reading Z buffer as a texture, then depth is not
explicitly rendered. If Z buffer can't be accessed as a texture, then depth is
rendered in additional rendering pass, using&.
基本渲染将每个物体都渲染一次。视图空间法线和高光强度被渲染进单一的ARGB32渲染纹理(法线在RGB通道,高光强度在A通道)中。如果平台和硬件支持将Z缓冲按纹理读取,那么深度不会被明确的渲染。如果Z缓冲不能被以纹理的方式访问,那么深度将在额外的渲染处理中被使用着色器替代技术渲染。
of the base pass is Z buffer filled with scene contents and Render Texture with
normals & specular power.
基本渲染的结果是被屏幕内容填满的Z缓冲和带有法线和高光强度的渲染纹理。
Pass 光照渲染阶段
pass computes lighting based on depth, normals and specular power. Lighting is
computed in screen space, so it's independent of scene complexity. Lighting
buffer is single ARGB32 Render Texture, with diffuse lighting in RGB channels
and monochrome specular lighting in A channel. Lighting values are encoded
using logarithmic encoding to provide extended dynamic range than usually
possible with ARGB32 texture.
光照渲染基于深度,法线和高光强度计算光照。光照是被屏幕空间被计算的,因此和屏幕复杂性无关。光照缓冲是一个单一的ARGGB32渲染纹理,纹理的RGB通道带有漫反射的光照信息,在A通道带有单一特定颜色的光照。光照值采用对数值编码以产生比通常ARGB32纹理所能达到的动态扩展范围。
model is fixed to Blinn-Phong.
光照模式固定为Blinn-Phong。
and Spot lights that do not cross camera's near plane are rendered as 3D
shapes, with Z buffer test against scene enabled. This makes partially or fully
occluded Point and Spot lights very cheap to render. Directional lights and
Point/Spot lights that cross the near plane are rendered as fullscreen quads.
不能跨越临近平面的点光源和聚光灯光源被作为带有开启测试场景的Z缓冲3D形状渲染,这部分和完全屏蔽的点光源和聚光灯光源可以非常廉价的渲染。 跨越临近区域的平行光或者点光源能作为全屏四边形。
light has shadows enabled, they are rendered and applies in this pass as well.
Note that shadows are not "free"; shadow casters need to be rendered
and a more complex light shader needs to be applied.
如果一个带有阴影的光源生效,在这个处理过程中会被很好的渲染。注意阴影并不免费,阴影投射器需要开销来渲染,同时一个更加复杂的光线着色器需要应用。
Pass 最后渲染阶段
pass produces final rendered image. Here all object with
shaders that fetch the lighting, combine it with textures and add any emissive
are also applied in the final pass. Close to the camera, realtime lighting is
used, and only baked indirect lighting is added. This crossfades into fully
baked lighting further away from the camera.
最终渲染阶段产生最后渲染后的图像,到这一步,所有的对象都将被再次渲染,其中着色器将混合前一步生成的光源和纹理以及所有自发光照明。
在最后渲染阶段光照贴图也被应用。靠近相机,使用实时光照,并仅烘焙间接光照。
其他:lightingmap 烘焙贴图不在及时光的技术范围内。烘焙灯光是通过贴图记录光照信息来模拟固定的光照效果,场景中本身不包含及时灯光。
Rendering Paths Comparison 渲染路径比较
Deferred Lighting&延时光照
Forward Rendering&正向渲染
Vertex Lit&顶点光照
Features 功能
Per-pixel lighting (normal maps, light cookies)每像素计算光照(法线贴图、灯光cookies)
Realtime shadows&实时阴影
1 Directional Light(一盏平行光)
Dual Lightmaps&双光照贴图
Depth&Normals Buffers&深度与法线缓冲区
Additional render passes&额外渲染通道
Soft Particles&软粒子
Semitransparent objects&半透明的物体
Anti-Aliasing&抗锯齿
Light Culling Masks&灯光剔除蒙板
Lighting Fidelity&光照保真度
All per-pixel&全部像素
Some per-pixel&某些像素
All per-vertex&所有顶点
Performance 性能
Cost of a per-pixel Light&每像素光照的花费
Number of pixels it illuminates照亮的像素数
Number of pixels * Number of objects it illuminates像素数*照亮的像素数
Platform Support 支持平台
PC (Windows/Mac)&台式机
Shader Model 3.0+
Shader Model 2.0+
Mobile (iOS/Android)&移动设备
OpenGL ES 2.0
OpenGL ES 2.0 & 1.1
Consoles &(游戏)平台
阅读(...) 评论()}

我要回帖

更多关于 电脑右下角有红叉 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信