噪音玻璃强度测试原理量结果与等效结果 是什么意思

国家规定工作场所八个小时接触噪声的限值为多少分贝_百度知道
国家规定工作场所八个小时接触噪声的限值为多少分贝
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
日接触时间8小时接触限值为85分贝,4小时为88分贝,2小时为91分贝,1小时为94分贝,参考卫生部、国家劳动总局制定的《工业企业噪声卫生标准》,2007年的《中华人民共和国国家职业卫生标准》的噪声部分也有相同标准作为参考。一、噪音控制途径在我国,有关标准规定,住宅区噪声,白天不能超过55分贝,夜间应低于45分贝。世界上一些城市颁布了对交通运输所产生噪声的限制。为了防止噪音,我国著名声学家马大猷教授曾总结和研究了国内外现有各类噪音的危害和标准,提出了三条建议:①为了保护人们的听力和身体健康,噪音的允许值在 75~90 分贝。②保障交谈和通讯联络,环境噪音的允许值在 45~60 分贝。③对于睡眠时间建议在 35~50 分贝。补充:①30~40分贝是理想的安静环境。②70分贝会影响谈话。③长期生活在90分贝以上的环境中,听力会受到严重影响并产生神经衰弱、头疼、高血压等疾病。④如果突然暴露在高达150分贝的噪声中,轻者鼓膜会破裂出血,双耳完全失去听力;重者则会引发心脏共振,导致死亡。
采纳率:96%
日接触时间8小时接触限值为85分贝,4小时为88分贝,2小时为91分贝,1小时为94分贝,参考卫生部、国家劳动总局制定的《工业企业噪声卫生标准》,2007年的《中华人民共和国国家职业卫生标准》的噪声部分也有相同标准作为参考。
本回答被网友采纳
国家对工作场所的噪声没有限值的规定,现在只有噪声的一般等级标准。因为不同的工作场所有不同的噪声,特别强噪声工作环境中,要缩短工作时间,增加劳动保护设施,有些工种国家规定工作一定的年限后可以提前退休。
其他1条回答
为您推荐:
其他类似问题
您可能关注的内容
噪声的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。当前位置:环境影响评价技术方法题库>
问题:  &#xe6
[单选] 强度为80dB的噪声,其相应的声压为()。
A . 0.1PaB . 0.2PaC . 0.4PaD . 20Pa
统计噪声级L10表示()。 取样时间内10%的时间超过的噪声级,相当于噪声平均峰值。
取样时间内90%的时间超过的噪声级,相当于噪声平均底值。
取样时间内90%的时间超过的噪声级,相当于噪声平均峰值。
取样时间内10%的时间超过的噪声级,相当于噪声平均底值。
某孕妇宫内孕22周,近几天腹部明显增大,腹胀痛,心悸气短。查:子宫大于妊娠月份,胎心不清,B超检查,羊水量超过2000ml,护理时注意指导病人() 人工破膜引产。
取半卧位减轻压迫症状。
服用利尿剂。
服用镇静剂。
测量机场噪声通常采用()。 等效连续A声级。
最大A声级及持续时间。
倍频带声压级。
计权等效连续感觉噪声级。
以下关于各种流产临床特点的描述,正确的是() 先兆流产:宫口未开,阴道出血量少于月经量。
难免流产:宫口未开,阴道出血少,未破水。
不全流产:宫口闭,阴道出血减少。
完全流产:宫口松弛,腹痛明显,阴道出血量多。
习惯性流产:自然流产在同一妊娠月份连续发生2次。
某声音的声压为0.02Pa,其声压级为()dB。 20。
强度为80dB的噪声,其相应的声压为()。
参考答案:B
●&&参考解析噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.(1)根据表中数据,求声音强度关于声音能量的回归方程;(2)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点共受到两个声音源的影响,这两个生源的声音能量分别是和,且,已知点的声音能量等于声音能量和之和,请根据中的回归方程,判断点是否受到噪声污染的干扰,并说明理由.附:对于一组数据,,,其回归直线的斜率和截距的最小二乘估计分别为:提示:下载试题将会占用您每日试题的下载次数,建议加入到试题篮统一下载(普通个人用户:3次/天)【知识点】&&&& 类题推荐统计案例2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?&有兴趣没兴趣合计男&&55女&&&合计&&&&(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.附表:0.1500.1000.0500.0250.0102.0722.7063.8415.0246.635&某企业有,两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从,两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?&优质品非优质品合计&&&&&&合计&&&&(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.附:0.1000.0500.0250.0100.0012.7063.8415.0246.63510.828&国际奥委会于日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了100位居民调查结果统计如下:&支持不支持合计年龄不大于50岁______________80年龄大于50岁10______________合计_______70100&(1)根据已知数据,把表格填写完整;(2)是否有95%的把握认为年龄与支持申办奥运有关?附表:,0.1000.0500.0250.0102.7063.8145.0246.635&试题点评评分:0评论:暂时无评论暂时无评论末页使用过本题的试卷同步试卷暂无数据相关知识点组卷网 版权所有温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
LOFTER精选
网易考拉推荐
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
以matlab中awgn函数为例说明:& & 在matlab中无论是wgn还是awgn函数,实质都是由randn函数产生的噪声。即:wgn函数中调用了randn函数,而awgn函数中调用了wgn函数。& & 根据awgn的实现代码可以知道”向已知信号添加某个信噪比(SNR)的高斯白噪声“,即:awgn(x,snr,’measured’,'linear’),命令的作用是对原信号x添加信噪比(比值)为SNR的噪声,在添加之前先估计信号x的强度。& & 这里涉及三个问题:在awgn这个函数中,SNR是如何计算的?什么是信号的强度?awgn函数具体是如何添加噪声的?& & 事实上,前两个问题是相关的,因为根据定义,SNR就是信号的强度除以噪声的强度(或者信号功率与噪声功率之比),所以,首先来讲讲信号的强度。其实信号的强度指的就是信号的能量,在连续的情形就是对x平方后求积分,而在离散的情形自然是求和代替积分了。在matlab中也是这样实现的,只不过多了一个规范化步骤罢了:& & & & & & & & & & & & & & & & & & & & & & & & & & & &sigPower = sum(abs(sig(: )).^2)/length(sig(: ))这就是信号的强度,这里sig(: )为信号。& & 至此,SNR的具体实现也不用多说了(注:由于采用的是比值而非db,所以与下面“计算信噪比”所使用的方式不同,即没有求对数步骤)。& & 最后说说awgn函数具体是如何添加噪声的。事实上也很简单,在求出x的强度后,结合指定的信噪比,就可以求出需要添加的噪声的强度noisePower=sigPower/SNR。由于使用的是高斯白噪声即randn函数,而randn的结果是一个强度为1的随机序列(自己试试sum(randn(1000,1).^2)/1000就知道了,注意信号的长度不能太小)。于是,所要添加的噪声信号显然就是: & & & & & & & & & && & & & & & & & & & & & & & & & & & & & & & & & & & & &sqrt(noisePower)*randn(n,1)其中n为信号长度。&& & 自然要求的白噪声的方差也可以求出来了!更新程序如下:function snr=SNR(I,In)% 计算信号噪声比函数% I :original signal,原始信号% In:noisy signal(ie. original signal + noise signal),加噪声后的信号% snr=10*log10(sigma2(I2)/sigma2(I2-I1))[row,col,nchannel]=size(I);snr=0;if nchannel==1%gray imagePs=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);elseif nchannel==3%color imagefor i=1:3Ps=sum(sum((I(:,:,i)-mean(mean(I(:,:,i)))).^2));%signal powerPn=sum(sum((I(:,:,i)-In(:,:,i)).^2));%noise powersnr=snr+10*log10(Ps/Pn);endsnr=snr/3;end****************************************************************************************************************************************一个例子:X = sqrt(2)*sin(0:pi/*pi); & & & & & & & &%产生正弦信号Y = awgn(X,10,'measured'); & & & & & & & & & & & & &%加入信噪比为10db的噪声,加入前预估信号的功率(强度)sigPower = sum(abs(X).^2)/length(X) & & & & & &%求出信号功率noisePower=sum(abs(Y-X).^2)/length(Y-X) & %求出噪声功率SNR=10*log10(sigPower/noisePower) & & & & &%由信噪比定义求出信噪比,单位为db*******************************************************************************************************************************************关于wgnWGN(m,n,p)产生功率为p dBW的m*n的高斯白噪声矩阵,其中p是以dbW为单位的输出强度。&若要产生一个均值0,方差为0.0965 的高斯白噪声,不可直接用WGN(N,1,0.0965)产生,而应该如下:1. N=1000;& & x=sqrt(0.0965)*randn(N,1);& &&Px=(x.'*x)/N &&% 验证,这里Px的求法与上面noisePower=sum(abs(Y-X).^2)/length(Y-X)的求法是一致的2. N=1000;& & y=wgn(N,1,10*log10(0.0965));& &&Py=(y.'*y)/N &&% 验证一点说明,对高斯白噪声,其方差和功率(单位为W)是一样的。因此,对方差,要做的只是将w变换成dbw,即dbw=10log(w)。**************************************************************************************************************************************SNRS/NSignal Noise Ratio)
dB10LOG(Ps/Pn)PsPn20LOG(Vs/Vn)VsVn“”
阅读(31701)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
loftPermalink:'',
id:'fks_',
blogTitle:'噪声强度(噪声功率) 噪声方差到底有什么关系?',
blogAbstract:'转载自
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}使用LabVIEW简化音频测量 - National Instruments
使用LabVIEW简化音频测量
音频测量是要求最高的任务之一,它需要高质量的信号采集、复杂的换算、深入的分析以及多种图形化表示。虚拟仪器为定制音频测量应用提供了新的可能性。利用工业标准计算机的强大性能和LabVIEW的灵活性,您可以完成自定义的音频测量。本文描述了如何使用LabVIEW以及声音与振动工具包对音频数据进行采集、分析与显示。我们将会演示最常见的测量以及在音频测量过程中完成多个任务的LabVIEW代码。
世界上第一次尝试对音频信号的测量发生在1627年,Francis Bacon试图测量开放空间中声音的速度1。虽然他的想法很好,但是由于技术上的局限性,他没有能够得到有效的测量结果。现在,我们使用软件和硬件能够分析包括速度在内的声音信号的许多特性。诸如LabVIEW等编程软件让我们能够在短时间内,利用易用、强大的功能开发复杂的测量应用。本文描述了开发提供更高性能和可扩展性音频系统的步骤。系统将基于LabVIEW工业标准测量软件进行开发。 
现代音频测量是数字测量系统要求最高的任务之一。要成功完成音频测量,软件必须能够完成多个任务(例如数据换算、滤波、分析与可视化)。从采集数据到显示数据,LabVIEW具有确保精确测量的灵活性与模块性。NI提供了为简化声音与振动测量而设计的工具包来扩展LabVIEW功能。NI硬件与软件能够无缝整合在一起,从而替换了大量箱式仪器,并且提供了更多功能自定义的空间。
下一小节对音频测量中的常见任务进行了一般性解释。本文中的实例使用LabVIEW开发系统专业版或开发系统完整版开发,其中部分使用LabVIEW声音与振动工具包。这些实例可以方便地整合到定制的音频测量系统中。
2. 数据采集、换算与加权
大多数测量系统都包含按照一定物理现象产生电子信号的传感器。测量这些电子信号并将它们输入到计算机进行处理的过程成为数据采集。例如音频等动态信号需要使用高分辨率和高动态范围的数字化设备。NI 4461设备提供了24位模数转换(ADCs)以及24位数模转换(DACs),可以同步采集并产生带宽从直流到92kHz的模拟信号以确保高分辨率的测量结果。图1是一个LabVIEW VI的程序框图和部分前面板,它在一台PXI系统中使用17块4461设备进行同步数据采集。当使用多PXI机箱系统的时候,同步通道数可达到1000以上。采集到的数据绘制在图表中。
图1:以每采样24位的精度对112个通道进行同步采样和绘图。
LabVIEW声音和振动工具包(SVT)提供了上层封装VI,以合适的单位显示数据,包括以工程单位表示的时域数据和以分贝为单位的频域数据等等。然而,使用数据采集设备采集到的数值往往与传感器的输出电压呈线性关系,原始数据通常是以电压为单位进行表示。信号换算是将电压数值转换为正确的工程单位的过程。SVS Scale Voltage to EU.vi提供了将电压信号变换为例如帕斯卡、g、m/s?等单位的简单方法。换算VI是来自数字化仪的原始数据与正在使用的麦克风或传感器相关的有用数值之间的桥梁。图2给出了使用SVT表示数据的VI,它使用合适的单位范围表示对应于实际观察到的物理现象的数值。
图2:使用LabVIEW声音与振动工具包将原始数据换算为合适的工程单位。
为了得到信号的精确换算,需要对系统进行标定。在被测数值与标准数值之间存在已知关系时,可以进行标定。在音频测量系统中,标定过程需要一个已知数值的外部声音源,它通常来自活塞发声器或声学标定器。SVT提供了标定VI,它能够确保整个测量系统的精度。
加权滤波器
测量硬件通常被设计为在音频带宽中具有线性响应。另一方面,人耳具有非线性性响应。因为在许多情况下,最终的传感器是人耳,我们需要对测量按照人耳模型进行补偿。使用加权滤波器是描述声音主观感知的最佳标准方法。加权滤波器通常使用模拟组件进行构建,不过,SVT提供了时域数据与频域数据的数字加权滤波器。图3是使用加权滤波器的VI,它和NI硬件结合在一起,符合美国国家标准学会(ANSI)的标准。
图3:将加权滤波器应用于SVT的换算数据。
3. 使用LabVIEW进行音频测量
在完成音频信号的采集、换算与加权之后,我们现在可以利用计算机的处理能力完成复杂的信号分析。本小节描述了行业中所使用的常见音频测量。在简单的说明之后,我们将给出演示如何使用SVT进行这些测量的实例代码。第一部分涵盖了仅仅使用LabVIEW就能够完成的标准测量;第二部分演示了借助SVT如何使用简单的LabVIEW代码进行高级音频测量。
音频测量中的多种标准方法需要利用单音频信号进行激励和分析。LabVIEW提供了从信号中提取关于一定音频的重要信息的高级VI。Extract Single Tone Information.vi可以找出信号中幅值最大的频率成分,并且计算其幅值、频率和相位。这个VI还提供了导出所提取的音频或去除此音频后的原始信号的选项。此VI还可以在某个频带内进行更细分的搜索,以获取更准确的结果。如图4所示,为Extract Single Tone Information.vi  对带有噪声的正弦波信号进行分析的结果。这个范例仅限于对单通道信息进行分析,但只要稍加修改,即可实现对多个通道信号的同步分析。
图4:提取信号中单音频的频率、幅值和相位。
对于一些应用而言,信号幅值并不能提供足够信息。在例如需要计算增益与功率、信号均方根值等许多测量中,LabVIEW提供了可以通过对瞬间信号数据取平方、对给定时间进行积分、计算开根号结果功能方便地计算均方根数值。Basic Averages DC-RMS.vi还能够对对信号计算得到的均方根数值取平均值。这个VI还包含了时间窗选项,可以得到更好的测量结果。图5展示了如何使用LabVIEW使用汉宁窗计算线性平均直流与均方根数值。
图5:获得采集信号的平均均方根数值。
增益是在音频系统中进行的一项基本测量。系统取得激励信号并产生响应信号。系统对信号进行放大的因数称为增益。在不同频率下计算一系列增益测量时,能够生成系统的频率响应函数。图6给出了根据采集激励与响应,计算系统增益的基本VI。这个例子通过计算响应的均方根数值对输入均方根数值的比例得到增益。这个实例用分贝表示增益,它是衡量响应的常用方法。
图6:根据采集信号计算系统增益。
通道间串扰
通常串扰定义为从一个通道向另一个通道的信号泄漏。要完成这个测量,将信号施加到一个输入上,测量这个信号在其他非驱动通道中的大小。对于不同情况和特定的应用,这个类型测量的定义有不同的标准。通常将这个测量表示为非驱动通道与驱动通道比例的分贝数。图7是完成两个采集信号串扰分析的VI。    
图7:计算来自两个采集信号的串扰。
总谐波失真
谐波失真是输入信号整数倍频率的多余信号。这种失真通常是模拟电路产生的,在确定音频质量中是一个重要的测量参数。谐波失真通过一定阶次谐波电平对原始信号电平的比例进行计算。总谐波失真(THD)是输入信号谐波引入的总失真的度量。
噪声与失真信号
进行THD测量的另一个选择包含在LabVIEW SINAD analyzer.vi中。信号噪声及失真比(SINAD)是输入信号能量与噪声以及谐波中能量之和的比例。音频质量可以用SINAD测量进行评估,因为这个结果让我们了解被测信号相对于不需要的噪声和失真相比占多少比重。
总谐波失真加噪声
得到信号的SINAD使其他测量变得更加简单,例如,总谐波失真加噪声(THD+D)可以通过SINAD方便地计算得到。THD+N通常用百分比表示。用分贝表示的THD+N与SINAD互补,所以要得到用百分比表示的THD+N需要进行转换。激励信号的实际电平是十分重要的,因为SINAD和THD+N与施加的激励信号有关。
图8中的例子展示了如何使用声音与振动工具包中的Tone Measurements Express VI来方便的获得输入信号的THD, SINAD, 以及THD+N等信息。
图8:使用LabVIEW测量总谐波失真(THD),噪声与失真信号(SINAD)以及总谐波失真加噪声(THD+N)
动态范围是音频系统的常见指标,即整个信号范围相对于系统中最小信号的比例。动态范围可以视为信号噪声比,因为系统中的最小信号通常是噪声,主要区别在于动态范围是在信号存在时,使用系统的背景噪声进行计算的。动态范围通常用分贝表示,可以在加权背景信号中进行计算,从而得到加权动态范围。图11计算包含单音频信号的动态范围。可以使用SVT加权VI进行加权得到A加权的动态范围测量结果。
图9:确定单音高信号的动态范围。
声音强度测量
最常见的音频测量可能是声音强度。声音强度定义为声压的动态变化。通常测量参照人类可以产生听觉的临界值(通常为20uP)进行度量,并且按照对数强度比例用分贝进行表示。在进行声音强度测量时,您通常使用加权滤波和平均。SVT能够方便地进行多种声音强度测量。在图12中,我们给出了计算基于采集数据的不同声音压力。还可以进行重复测量,计算反响次数或是一定时间内的等效噪声强度。
图10:使用SVT从采集数据计算多个声音强度测量。
分数音阶分析是分析音频与声学信号中广泛使用的技术,因为这种分析展示了类比于人耳响应的特性。这个过程包括通过带通滤波器发送时域信号,计算信号的均方值以及在方块图上显示这些数值。ANSI与国际电工委员会(IEC)标准定义了音阶分析仪的规范。带通滤波器特性与图表通过所需的频率带和所需的音阶分数定义。NI DSA板卡以及SVT能够创建与国际标准完全兼容的分数音阶分析仪。SVT包含符合ANSI和IEC标准的VI,它们可以进行全音阶直至1/24音阶分析。图11展示了使用SVT进行三分之一音阶分析。
图11:基于ANSI标准完成1/3音阶分析。
频率测量常用于音频应用中。SVT包含用于频率分析的强大工具。我们有用于基带FFT、基带子集分析与zoom FFT的工具,它们能够获取功率谱、功率谱密度等等。SVT Power in band.vi是频率谱分析VI之一。它计算指定频率范围内的总功率。如图12所示,您可以从功率谱、功率谱密度、幅值谱或连续输出功率谱中获得频带功率。结果根据输入单位,用适当的单位进行表示。
图12:找出指定频带中的功率。
进行频率响应分析的目的通常是得到被测系统频率响应函数(FRF)的特征。FRF表示在频域中输出对输入的比例。FRF曲线是音频设备中的典型规范。有多种方法可以得到FRF,双通道频率分析可能是其中最快的方法。交叉频谱方法根据两个输入生成频率曲线,它们通常是被测单元(UUT)的激励和响应。
频率响应分析需要的常见配置要求使用UUT的宽带激励(通常是噪声信号或多音高信号)。然后同时采集UUT的激励和响应。完成双通道频率分析可以获得UUT的频率响应和相位响应以及信号连续性。为了改进FRF测量,您可以对响应取平均值,通过对FRF取平均值,您可以获得更为精确的响应曲线。这个方法的优点是能够克服噪声、失真和非相关效应。它唯一的局限性是频率信噪比可能比扫频测量低。图13展示了基于SVT从采集到的激励与响应中获得波特图的VI。
图13:使用跨频谱方法获得频率响应函数。
这里讨论的测量只是LabVIEW用于音频测量的简介。将硬件与软件整合在一起完成整个测量过程,包括采集数据、分析与显示。LabVIEW的强大功能和灵活性可以扩展系统,生成多个测量结果、自动化测试、生成报告,从而可以提高性能并且降低总成本。
书签收藏和分享
本网站使用cookies来为您提供更好的浏览体验。}

我要回帖

更多关于 病区噪音强度 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信