无线电波的波长范围,波长3000米,天线只有1米,会发生什么情况?

无线电波的基本知识
无线电波的基本知识
什么叫无线电波?无线电波是一种能量传输形式,在传播过程中,电场和磁场在空间是相互垂直的,同时这两者又都垂直于传播方向。
1.无线电波
无线电波和光波一样,它的传播速度和传播媒质有关。无线电波在真空中的传播速度等于光速。我们用C=300000公里/秒表示。在媒质中的传播速度为:Vε`=C/√ε,式中ε为传播媒质的相对介电常数。空气的相对介电常数与真空的相对介电常数很接近,略大于1。
因此,无线电波在空气中的传播速度略小于光速,通常我们就认为它等于光速。
无线电波有点象一个池塘上的波纹,在传播时波会减弱
无线电波的波长、频率和传播速度的关系
可用式 λ=V/f 表示。
式中,V为速度,单位为米/秒;f 为频率,单位为赫芝;λ为波长,单位为米。
由上述关系式不难看出,同一频率的无线电波在不同的媒质中传播时,速度是不同的,因此波长也不一样。
我们通常使用的聚四氟乙烯型绝缘同轴射频电缆其相对介电常数ε约为2.1,因此,Vε≈C/1.44 ,λε≈λ/1.44 。
2.无线电波的极化
无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。如果电波的电场方向垂直于地面,我们就称它为垂直极化波。如果电波的电场方向与地面平行,则称它为水平极化波。
3.天线的极化
天线辐射的电磁场的电场方向就是天线的极化方向
两个天线为一个整体
两个独立的波
4.圆极化波
如果电波在传播过程中电场的方向是旋转的,就叫做椭圆极化波。旋转过程中,如果电场的幅度,即大小保持不变,我们就叫它为圆极化波。向传播方向看去顺时针方向旋转的叫右旋圆极化波,反时针方向旋转的叫做左旋圆极化波。
垂直极化波要用具有垂直极化特性的天线来接收;水平极化波要用具有水平极化特性的天线来接收;
右旋圆极化波要用具有右旋圆极化特性的天线来接收;而左旋圆极化波要用具有左旋圆极化特性的天线来接收。当来波的极化方向与接收天线的极化方向不一致 时,在接收过程中通常都要产生极化损失,例如:当用圆极化天线接收任一线极化波,或用线极化天线接收任一圆极化波时,都要产生3分贝的极化损失,即只能接 收到来波的一半能量。
5.极化损失
当来波的极化方向与接收天线的极化方向不一致时,在接收过程中通常都要产生极化损失,例如:当用圆极化天线接收任一线极化波,或用线极化天线接收任一圆极化波时,都要产生3分贝的极化损失,即只能接收到来波的一半能量;
当接收天线的极化方向(例如水平或右旋圆极化)与来波的极化方向(相应为垂直或左旋圆极化)完全正交时,接收天线也就完全接收不到来波的能量,这时称来波与接收天线极化是隔离的。
(极化)隔离
隔离代表馈送到一种极化的信号在另外一种极化中出现的比例。
未完待续.......
责任编辑:
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
对讲机,数字对讲机
专业对讲机,手机对讲机 公网对讲机
今日搜狐热点【图文】天线和电磁波_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&100W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
天线和电磁波
阅读已结束,下载本文到电脑
定制HR最喜欢的简历
你可能喜欢扫二维码下载作业帮
3亿+用户的选择
下载作业帮安装包
扫二维码下载作业帮
3亿+用户的选择
天线长度与谐振的关系,为什么天线长度常取1/4,1/2,3/4,5/8等数值,为什么取这些长度,天线就能与某一个波长的波产生谐振.天线也是一个LC回路,那么天线的容抗和感抗怎么计算?请给出定理,公式,以及参考书,越详细越好,到时候加分.“理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。”请问是什么理论?
作业帮用户
扫二维码下载作业帮
3亿+用户的选择
一段金属导线中的交变电流能够向空间发射交替变化的感应电场和感应磁场,这就是无线电信号的发射.相反,空间中交变的电磁场在遇到金属导线时又可以感应出交变的电流,这对应了无线信号的接收.在电台进行发射和接收时都希望导线中的交变电流能够有效的转换成为空间中的电磁波,或空间中的电磁波能够最有效的转换成导线中的交变电流.这就对用于发射和接收的导线有获取最佳转换效率的要求,满足这样要求的用与发射和接收无线电磁波信号的导线称为天线.理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高.因此,天线的长度将根据所发射和接收信号的频率即波长来决定.只要知道对应发射和接收的中心频率就可以用下面的公式算出对应的无线电信号的波长,再将算出的波长除以4就是对应的最佳天线长度.频率与波长的换算公式为:波长=30万公里/频率=米/频率 (得到的单位为米))例:求业余无线电台的天线长度已知业余无线电台使用的信号频率为435MHz附近,其波长为:波长= 300000公里/435MHz = 5000000= 300/435= 0.69米对应的最佳天线长度应为 0.69/4 ,等于0.1725米当频率为439MH时,大家可以将计算公式简化为波长=300/439=0.683米最佳天线长度为0.683米/4,等于0.17米注意:只要在金属体内有交变的电流,该金属体就要向空间辐射电磁波;反之,只要空间中有一定强度的电磁波信号,就会在该空间中的金属体上感应出交变的电流.天线与一般金属体的不同之处在于,天线强调了将金属体内交变电流最有效的转变成空间的电磁波或将空间的电磁波最有效的转变成金属体中的交变电流信号.
为您推荐:
其他类似问题
高频电子线路 张肃文 第四版
扫描下载二维码波束成形如何为5G添翼?
> 波束成形如何为5G添翼?
波束成形如何为5G添翼?
大家一定有过这样的经验,在一间房间里当人不多时,手机信号很好;当许多人聚集到房间里的时候,手机信号就会变差,甚至没办法打电话。这种现象归根到底就是频谱复用做得不够好,无法给所有人分配必需的频谱资源。本文引用地址:有三种经典的频谱复用方法:即时分复用(典型应用:中国移动2G)、频分复用(典型应用:中国联通3G)和码分复用(典型应用:中国联通3G)。可以用一个例子来说明时分复用、频分复用和码分复用的区别。在一个屋子里有许多人要彼此进行通话,为了避免相互干扰,可以采用以下方法:1) 讲话的人按照顺序轮流进行发言(时分复用)。2) 讲话的人可以同时发言,但每个人说话的音调不同(频分复用)。3) 讲话的人采用不同的语言进行交流,只有懂同一种语言的人才能够相互理解(码分复用)。当然,这三种方法相互结合,比如不同的人可以按照顺序用不同的语言交流(即中国移动3G的TD-SCDMA)。然而,这三种经典的复用方式都无法充分利用频谱资源,它们要么无法多用户同时间通讯(TDMA),要么无法使用全部频谱资源(FDMA),要么需要多比特码元才能传递1比特数据(CDMA)。那么,有没有一种方法可以克服以上多路方式的缺点,让多个用户同时使用全部频谱通讯呢?让我们先来思考一下,如果在一个房间里大家同时用同一种音调同一种语言说话会发生什么?很显然,在这种情况下会发生互相干扰。这是因为信号会向着四面八方传播,所以一个人会听到多个人说话的声音从而无法有效通讯。但是,如果我们让每个说话的人都用传声筒,让声音只在特定方向传播,这样便不会互相干扰了。在无线通讯中,也可以设法使电磁波按特定方向传播,从而在不同空间方向的用户可以同时使用全部频谱资源不间断地进行通讯,也即空分复用(space-division
access,SDMA)。SDMA还有另一重好处,即可以减少信号能量的浪费:当无线信号在空间中向全方向辐射时,只有一小部分信号能量被接收机收到成为有用信号。大部分信号并没有被相应的接收机收到,而是辐射到了其它的接收机成为了干扰信号。当使用SDMA时,信号能量集中在特定的方向,一方面减少了对其它接收机的干扰;一方面也减小了信号能量的浪费。在通讯中,SDMA是大规模MIMO(massive Multiple-Input
Multiple-Output,指在发射端和接收端分别使用大规模发射天线和接收天线阵列,使信号通过发射端与接收端的大规模天线阵列传送和接收,从而改善通信质量)技术应用的一个重要例子,而将无线信号(电磁波)只按特定方向传播的技术叫做波束成形(beamforming)。有了波束成形,众多小伙伴就可以同时在同一个地方欢乐地刷手机上网而不用担心信号干扰的问题。什么是波束?&波束&这个词看上去有些陌生,但是&光束&大家一定都很熟悉。当一束光的方向都相同时,就成了光束,类似手电筒发出的光。反之,如果光向四面八方辐射(如电灯泡发出的光),则不能形成光束。和光束一样,当所有波的传播方向都一致时,即形成了波束。生活中的光束,光束也是波束的一种工程师利用波束已经有相当久的历史。在二战中,工程师已经将波束利用在雷达中,雷达通过扫描波束方向来探测整个空间中所有目标的位置。另一个例子是卫星通讯,也即我们生活中常见用于卫星电视的&锅盖天线&。卫星和地面接收天线的距离非常远,信号衰减非常大,于是卫星信号到达地面时能量已经非常小。因此,我们需要想方设法收取卫星发出的每一点信号能量。当卫星的信号向空间全方向辐射时,绝大多数能量并没有被地面天线接收到,而是被浪费了。为了避免这种浪费,我们在接收和发射卫星信号时,都会使用波束。这样,发射的电磁波信号都集中在一个方向上,只要接收天线能对准这个方向,就可以接收到尽可能多的信号。波束的传统应用是雷达(左)和卫星通讯(右)如何实现波束成形光束实现很简单,只要用不透明的材料把其它方向的光遮住即可。这是因为可见光近似沿直线传播,衍射能力很弱。然而,在无线通讯系统中,信号以衍射能力很强的电磁波的形式存在,所以无法使用生成光束的方法来实现波束成型,而必须使用其他方法。无线通讯电磁波的信号能量在发射机由天线辐射进入空气,并在接收端由天线接收。因此,电磁波的辐射方向由天线的特性决定。天线的方向特性可以由辐射方向图(即天线发射的信号在空间不同方向的幅度)来描述。普通的天线的辐射方向图方向性很弱(即每个方向的辐射强度都差不多,类似电灯泡),而最基本的形成波束的方法则是使用辐射方向性很强的天线(即瞄准一个方向辐射,类似手电筒)。然而,此类天线往往体积较大,很难安装到移动终端上(想象一下iPhone上安了一个锅盖天线会是什么样子)。另外,波束成形需要可以随着接收端和发射端之间的相对位置而改变波束的方向。传统使用单一天线形成波束的方法需要转动天线才能改变波束的方向,而这在手机上显然不可能。因此,实用的波束成形方案使用的是智能天线阵列。普通天线(方向性弱)和智能天线阵列(方向性强)智能天线阵列原理并不复杂。当由两个波源产生的两列波互相干涉时,有的方向两列波互相增强,而有的方向两列波正好抵消(如下图)。在波束成形中,我们有许多个波源(即天线阵列),通过仔细控制波源发射的波之间的相对延时和幅度我们可以做到电磁波辐射的能量都集中在一个方向上(即接收机所在的位置),而在其他地方电磁波辐射能量很小(即减少了对其他接收机的干扰)。此外天线辐射的方向可以通过改变波源之间的相对延时和幅度来实现,可以轻松跟踪发射端和接收端之间相对位置的改变。波束成型系统架构波束成形与毫米波是天作之合目前波束成形已经被使用在带有多天线的WiFi路由器中。然而,手机上不可能像路由器一样安装WiFi频段的多根天线,因为天线尺寸太大了。天线的尺寸是由电磁波信号的波长决定的,WiFi和当前手机频段的电磁波波长可达十几厘米,因此很难将如此大的天线集成在手机上。为了解决这个问题,我们可以把波束成形和毫米波技术结合在一起。毫米波波段的波长大约是WiFi和手机频段波长的十分之一左右,因此可以把多个毫米波天线集成到手机上,实现毫米波频段的波束成形。波束成形和毫米波技术可谓是天作之合,使用毫米波可以给信号传输带来更大的带宽,波束成形则能解决频谱利用问题,使得通讯如虎添翼。毫米波天线阵列体积很小,可以安装到手机上结语波束成形可以使信号的能量集中在接收端所在的方向,从而改善频谱利用效率。波束成形配合毫米波技术可以让通讯系统拥有高带宽并且支持大量用户同时通讯,从而使系统如虎添翼。
分享给小伙伴们:
我来说两句……
微信公众号二
微信公众号一探秘宇宙有支国际联队
来源:人民日报
  探秘宇宙有支国际联队
  SKA首台天线样机。
  新华社记者 牟 宇摄(资料图片)
  日前,经过国际平方公里阵列射电望远镜(SKA)组织各成员国一致同意,西班牙正式成为SKA组织的第十一位成员。在此之前,参与SKA的核心成员国有10个,分别是英国、中国、澳大利亚、加拿大、印度、意大利、新西兰、南非、瑞典和荷兰。
  SKA始于上世纪90年代初,是国际天文界计划建造的世界最大综合孔径射电望远镜,也将成为人类有史以来建造的最庞大的天文设备。它是中国参与、多国合作、共同出资的国际大科学工程。全球约20个国家上百所大学和科研机构的天文学家和工程师参与项目研发。中国科学院国家天文台研究员秦波说:“目前,SKA已处于建设准备阶段末期,预计在2020年开始第一阶段的建设。”
  将在约3000公里荒野中,建设3套在不同无线电频段工作的天线阵
  与“哈勃”等光学望远镜不同,SKA并非通过光学镜头捕捉可见光,而是利用大型天线接收来自宇宙天体不同波长的无线电波来进行天文学研究的射电望远镜。
  按计划,SKA将在约3000公里的广袤荒野中,建设2500面15米口径反射面天线阵、130万个天线单元组成的低频阵及250个直径60米的中频孔径阵共计三套独立的天线阵,分别工作在不同的无线电频段。组成阵列的射电望远镜总接收面积达平方公里量级。
  秦波介绍,对于射电望远镜来说,灵敏度和巡天速度是非常重要的两个指标。灵敏度越高,天线“看”得就越远,探测宇宙中最微弱信号的能力越强;巡天速度越快,天线“扫描”和“观测”同一天区的速度就越快,工作效率就越高。他表示,“SKA将成为地球上最大、最先进的一套天文科学设施。它比目前世界上最灵敏的射电望远镜阵列——美国JVLA的灵敏度提高50倍,巡天速度提高1万倍。建成后的SKA,其性能在本世纪将保持几十年的领先地位。”
  作为人类有史以来建造的最庞大的天文设备,SKA的观测能力和作用也是前所未有的强大。秦波说:“通过利用SKA观测宇宙天体,天文学家希望能够回答人类认识宇宙的一些基本问题, 特别是关于第一代天体如何形成、星系演化、宇宙磁场、引力的本质、地外生命与地外文明、暗物质和暗能量等。”
  中国科学院院士武向平说:“SKA以追求突破性科学发现为目标和动力,有望揭示宇宙中诞生的第一代天体,重现宇宙从黑暗走向光明的历史进程。”
  2016年9月,有着中国“天眼”之称的500米口径球面射电望远镜(FAST)落成,开创了建造巨型射电望远镜的新模式。秦波说:“FAST灵敏度可以和SKA第一阶段的灵敏度相媲美,甚至有可能超越它。但是,FAST属于单口径射电望远镜,而SKA作为一个阵列,其最长基线达3000公里,仅仅第一阶段达到的空间分辨率就是FAST的528倍。这就像FAST可以看到朦胧的一张人脸,而SKA则可以把人的眼睫毛看得清清楚楚。”
  秦波也表示,FAST事实上起源于我国参加SKA过程中发展出的中国SKA概念,FAST作为世界最大的单天线望远镜,与SKA在建设时间上有先后,在科学观测上可形成互补,“两者结合,可形成大样本搜寻和暗弱目标重点观测的优势互补。”
  我国全程参与了SKA项目的所有环节,并在其中扮演重要角色
  SKA项目是中国继参与国际热核聚变实验堆(ITER)计划之后,参与的第二大国际大科学工程。
  1993年,在日本东京第二十四届国际无线电科学联盟大会上,包括中国在内的10国天文学家联合倡议:筹划建造下一代大射电望远镜LT(Large Telescope,1999年易名SKA)。其后,中国又提出了SKA的具体建设方案,成为当时的5个候选方案之一,并竞争SKA台址国。2011年,SKA国际组织在罗马正式创立。中国是当时9个创始国之一,国家天文台代表中国在罗马签字。
  2012年,SKA双台址方案得到SKA组织成员国一致通过。SKA望远镜的两个台址国分别为澳大利亚和南非,总部设在英国。其中高中频天线阵将建在以南非为核心、包含其他8个南部非洲国家的非洲大陆,低频天线阵将建在澳大利亚的西澳洲。
  秦波说:“与参加ITER项目不同的是,SKA项目是我国参加的首个从项目发起和酝酿到国际组织创建,从基本规则和条约的制定到项目建设和运行,均全程参与并扮演重要角色的国际大科学计划。”
  据介绍,SKA的建设采取分阶段方法,前期是建设准备阶段,正式建设阶段包括SKA1和SKA2两个阶段。SKA1建设约10%的体量,计划在2020年开工,历时5年;第二阶段建设其余的部分,预计在2030年后完成全部建设。
  “2012年9月,国务院出文批准中国正式参加SKA项目的建设准备阶段,中国科学技术部代表中国参加国际SKA组织。”秦波说,“建设准备阶段主要包括详细设计、工程研发、合同准备以及国际组织创建、规则制定、出资谈判等工作,主要是为了后期建设做好准备,目前已进入尾声。”
  在建设准备阶段,国际SKA组织向全球发布11个工作包任务,中国目前参与了其中7个工作包的竞标。
  “天线工作包是其中最大、工程造价最高的工作包。经过几轮激烈竞争,最终中国的‘天线解决方案’脱颖而出,成为唯一候选方案,中国也成为天线工作包联盟的主席。”秦波说,“今年2月,中国电子科技集团公司第54研究所已成功研制出SKA首台天线样机SKA—P,在多个领域综合性能都实现了国际领先。”
  参与国际大科学项目,有助于提升相关技术自主创新能力
  专家们普遍认为,中国持续参与SKA国际大科学工程, 一方面满足国家科技和高新技术产业发展需求。另一方面,通过参与该项目,中国可跻身国际射电天文科学前沿, 提升相关技术自主创新能力, 获得国际大科学工程建设、管理经验和相关技术成果。
  秦波说:“SKA体现了许多当代科学技术的最新和最高成就,将推动全球制造、通信、计算、能源等一系列产业迅速发展。中国相关产业界已具有一定的技术储备和工程经验, 有能力参与该项目技术研发,并将相关成果应用到国家重大需求领域。”
  通过参与SKA项目建设,中国的科研人才队伍也将进一步得到培育和壮大。秦波说:“由于历史原因,中国射电天文基础、相关技术以及人才储备相对较弱,通过与射电天文强国合作,可以通过科研人员互访、联合培养博士生等方式促进我国年轻一代人才的成长。目前与总部国英国和台址国澳大利亚联合培养SKA博士生的‘SKA人才培养专项’已取得不错的效果。”
  据了解,SKA1建成后,各成员国可以按照出资贡献按比例获得一定的望远镜观测时间,可以分享SKA获得的各项原始数据。
  秦波说:“中国的科学团队还计划建设SKA区域数据中心,并使之逐步过渡到SKA亚太科学和数据中心,成为国际SKA科学研究和数据分析的一个重要节点。这样中国科学家在国内就能更便捷地使用数据产出科学成果,也将吸引国际伙伴来中国进行科学研究和交流。”
  吴月辉
查看余下全文
(责任编辑:韩艺嘉)}

我要回帖

更多关于 无线电波和红外线波长 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信