物质传输设备设计完成上电测试以后怀孕有啥异样样情况发生吗?

将电视机当做LED显示屏那样电视机和电脑的连接线最长有效距离多远?... 将电视机当做LED显示屏那样
电视机和电脑的连接线最长有效距离多远?

可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

主要现在是要用电视机,用什么线可以连接?需要什么软件还是设备?
不舍告诉你了吗 要购买电脑字幕机 软件随机附送 用专用视频
电脑可以正常使用,文字传输到电视机上面?不好意思不懂啊!

可以通过SmartAir技术的设备无线传屏

但是LED屏又是LED屏,

}

十多年来,我创有关大功率微波定向发射的讨论有上百篇(例如:),但是没有一篇关于实践的报导。介于这种形势,我就来开个先河吧。

微波是电磁波的一种,曾经严格的定义是频率范围300MHz-3GHz的无线电波。随着技术的发展,频率越做越高,因此习惯上把频率范围1GHz~数百GHz的无线电波称为微波,而频率高于30GHz的最近又更多的直接叫做毫米波。

微波的波长较短,与更长波长的无线电波相比,可以用更小尺寸的天线获得较高的方向性。微波在空间中主要依靠直线传播,较大功率的微波可以用波导来传输,损耗小、成本合理。因此,用微波传输能源(微波输能)是一种有前景的应用方式。微波作用于极性分子,例如水和含水较多的蔬菜、肉类,会高效的转变为热。微波炉是微波能在生活中最常见的应用。

产生微波的方式很多。对于中大功率微波而言,常用的设备是磁控管、行波管等。当然,也可以用半导体振荡器和放大器经过功率合成来产生大功率微波,但是成本较高,效率较低(以电能转换为微波辐射的效率计,~45%),暂时还难以普遍推广。磁控管是最成熟、最简便、最廉价、效率最高(以电能转换为微波辐射的效率计,70%~)的方式。微波炉中的磁控管通常只需要30多元人民币,可以说已经廉价到极致。工业加热和微波输能中,还会用到更大的磁控管,目前常用的最大规格为75kW。当然,一般很难用到这么大的管子,在日常的工业应用中,最常使用的是1kW的磁控管,价格大约100元人民币。

强的微波辐射可以用来加热产品,或者一些有趣的用途,比如杀灭白蚁(可能,我还没做实验)、捅马蜂窝,或者也可以用于打无人机、消灭暗藏的间谍设备等特殊用途。微波也是电能无线传输的可行方式,经过良好设计的设备,已经可以在千米以上距离,传输千瓦量级的电能。当然由于微波的聚焦不像激光那么好,照到天线的只有很小一部分,因此无线传输能量的效率偏低,目前暂时只具有军事实用价值。

微波作用于生物,主要发生热效应,和微波炉加热食物的道理是一样的。关于微波的“危害”,历史上有很多争论。目前学术界主流的观点是,弱的微波没有什么危害,强的微波会加热组织,引起局部热损害(烫伤)或引起中暑,过强的微波可以直接烤熟生物。不过持不同观点的学者也不少。例如,微波能够使某些化学反应以不常见的速率或平衡来进行,然而目前缺少完美的理论解释。弱的微波也会导致细胞膜穿孔,这方面有较强的实验证据支撑,但也缺少有效的理论解释。因此,许多人认为尽管弱微波的有害证据不足,但由于未知的方面较多,尚不能武断的轻信弱的微波没有危害。综合目前研究成果,我们认为短期的非热照射不会产生不良后果;短期的热照射(通常指功率通量密度高于10mW/cm2,100W/m2),在不引起局部过热(超过40℃)的前提下也是安全的。事实上,人体由于含水丰富,血液循环迅速,有较强的散热能力。感觉到微波“温暖”的强度,短时间不会引起严重后果,但是需要注意某些组织的散热能力差,且变热以后人不会马上察觉,就容易引起严重后果。其典型代表是眼睛的晶状体、男性的睾丸。某些内脏过热时并不表现为热感,可能引起疏忽,也应特别注意。

用微波作为武器是古已有之的研究。这种武器通常需要较高的频率。军事上的实验发现,频率在30~150GHz(110GHz附近为佳)的微波由于深入人体较浅,能量主要在皮下释放,正好刺激皮肤的感受器,因此具有较好的人员驱散和震慑作用。这种微波武器可以被独裁者用于镇压聚集人群,当功率足够大时,甚至可以瞬间点燃被试动物的表皮和毛发。某些微波发射器也用于打击飞行器,扰乱敌方的通信设备等用途。工业上常用的915MHz和2.45GHz微波发生器由于频率太低,会加热到肌肉层。换句话说,要加热的组织体积巨大,热得慢,需要很大的功率和较长的时间,不太适合军事用途。

2、DIY的方法和设备

这里以DIY一台2.45GHz频率的磁控管微波发射器为例。所有的零件都可以方便的买到或者自制。

微波发射器至少需要包括电源、磁控管、激励腔、天线(这里用喇叭天线)和必要的控制设备。下图是某型微波炉的电路图,可以拆解废弃微波炉直观的了解。

我们要DIY的发射器,在上图中只出现了高压电源、灯丝电源、磁控管;为了能够定向的发射,还需要激励腔和喇叭天线。

关于磁控管原理,请通过PPT了解(转载)。

磁控管可以用几十元一个的家用微波炉管子,不过本文为了效果更好,用的是1kW工业加热磁控管。这种磁控管满大街都是,略微贵点:

激励腔是磁控管的输出元件,它的目地是把磁控管的微波震荡转变为波导中适当传播模式的电磁波。

下图是一种廉价的BJ22激励腔(网络图)。


磁控管直接安装在这个激励腔上。注意图左边的那些螺丝孔,与常见磁控管是匹配的。

这种激励腔较大,不过由于已经钣金或者压铸化了,非常便宜,只需要几十元。本文使用细长一些的BJ26激励腔,经过淘宝搜索可得:

这个激励腔实际要不了这么多钱,估计也就几十元的水平。不过专业用的高精度波导是铣削加工的,必然很贵,除了实验室研究用途,通常没有太大必要。

激励器的输出法兰,可以连接更长的波导,也可以直接连接喇叭天线。本文直接连接喇叭天线。

但是喇叭天线却不好找,淘宝上几乎没有,有也很贵,因为工业上通常不是用我们需要的喇叭天线来做输出的,因此适配的喇叭就贵。不过,DIY当然要追求较低的成本,于是我们祭出大杀器:

首先,用3D打印打印一个对应BJ26的法兰,留一截两三厘米长的波导:

在等待3D打印的过程中,可以趁机对喇叭进行设计仿真:

根据需要的增益(这里为13dB)、副瓣抑制比(这里为20dB)并尽量往小尺寸的方向上优化,得到喇叭的结构参数。

喇叭设计是本科阶段的课程,没学过的请补习《微波工程》或参考下面课程设计(网上转载):

 本文所用喇叭,其HFSS仿真模型直接公布如下,仅供参考,不保证正确

 知道了喇叭的结构参数,就好办了。

首先请实验室的妹纸帮忙做个剪纸手工:

那么,还剩下没准备好的部分就是电源了。

众所周知,微波炉一般用变压器将电压提升到接近2KV交流,然后用二倍压整流电路再将其提升到4kV直流。这种组合具有皮实耐操等特点,但不可避免的用到笨重的变压器和体积硕大的工频倍压电容。巨大的体积和巨大的重量都导致装置难以移动,所以,咱肯定不能用这么low的方法。

作为实验,本文用了一个比较贵的电源:

 这个电源是专业级的,确实有点贵,如果想便宜,很简单:

 注意这种几十元的都是拆机件,不是全新的。

如果想移动使用怎么办呢?好办:

电源的问题,就被人民币大法解决了。

磁控管的接法通常是外壳接地,两个电极都接4000V负高压。磁控管的两个电极之间是灯丝,也就是说,对于变压器,高压绕组上需要有一个灯丝绕组。对于开关电源,也会引出两根高压线,一般不用区分这两根线的极性。

磁控管如果短时间(几秒钟)工作,可以不用冷却。长期工作必须冷却,因此需要一个强力风扇,以及对应的风扇电源。

把上述东西攒起来,就得到我们的实验装置:

 下面,就进行作死实验

点个灯看看(可以激励荧光灯管,输出比灯管本身设计要强得多的光功率,此处用的紫外线灯管,当心紫外危害)

 谁说电磁波“看不见摸不着”?这不就摸着了吗。用热感来判断场强分布,准确、迅速。。

 直观感觉一下温度和场强的关系

 窝草,天线着火了

 对应于2.45GHz左右的那一对振子,产生高温,烧坏了塑料保护盖,点燃了部分PCB。

 轻伤不下火线,PCB的延烧面积迅速扩大。

 另一个角度。从频谱也可看出,加热用磁控管的输出品质不佳。

 录到的功率通量密度。此数值偏小,这种测试方法不太准确。另外就是天线已经被烧坏了。

 最后,火腿肠被烤干,但并未着火。

无线输电的接收器,还没做。

长数君对本文有重要贡献。

免责声明:本文内容仅供拓展知识,滥用可能导致危险和危害,非专业人士切勿模仿。

}

1880年12月,美国纽约提供了真正意义上的公用照明电力服务,由BrushElectricCompanys建设的输电线路,供电距离在曼哈顿的几条街道之间,只有3.2公里;1889年,俄勒冈波特兰通用电气创造了14公里的输电距离,额定输送功率4千瓦,创造当时世界范围电力传输的“高压”奇迹。

125年后的今天,在中国,河南已经通过一条800千伏特高压直流输电通道与新疆相连,每年从新疆可以接受370亿千瓦时的电量,其线路总长2192公里,途经新疆、甘肃、宁夏、陕西、山西、河南六省(区)。自2009年以来,国家电网已经先后建成投运2条交流与3条直流特高压输电工程。

电力科学家们怎样从输电距离3.2公里纵深到2000公里以上或者未来的5000公里?技术秘诀是提升输电电压。为此,科学家们为提高既看不见也摸不着的输电电压等级不懈努力:电网建设历史记录,百年来输送电压从10千伏、35千伏、110千伏、220千伏、330千伏、500千伏、750千伏,直到1000千伏。

但是,每一次提高电压都面临电力传输技术的障碍。交流输电电压一般分为高压、超高压和特高压,国际上高压通常指35-220千伏的电压;超高压通常指330千伏及以上、1000千伏以下的电压;特高压指1000千伏及以上的电压。每提高一个输电压等级,都面临技术极限的突破与挑战。

难题之一:提高电压与抑制电压

陈维江是特高压输电研究领域的专家,是国家电网公司交流建设部副主任,同时也是中国武汉特高压交流试验基地的主要建设者,在特高压输电重大关键技术的研究中发挥了重要作用。当记者在国家电网办公大楼的一间会议室问及特高压技术突破的最大难点是什么时,他回答:“首要攻克的是解决电压控制难题”。

特高压,顾名思义就是传输高等级的电压,科学家们千方百计提高电压传输等级,为何首要考虑的却是如何控制电压?“电压控制”是输电技术领域的重要概念,是指电源电压超过其额定值时的电压控制,包括三种方面:第一是运行电压控制,第二是内部过电压控制(包括暂时过电压、操作过电压以及特快速瞬态过电压),第三是雷击过电压控制(外部过电压)。

当电网正常运行时,线路50赫兹正弦波的电压是运行电压,比如1000千伏特高压线路,正常运行的线电压是1000千伏,500千伏超高压线路,运行电压就是500千伏,运行电压也被称为稳态电压;而过电压则是一种瞬态电压,只在某个瞬间突然出现,而不像正弦波那样反复不变。过电压要比运行电压高很多,如果以音响设备比喻,播放正常音量时可视为运行电压,而当插拔信号线瞬间发出的砰砰巨响可以视为过电压。电网里日常的线路、变压(气压变量)器(Transformer)、并联电抗器的投切、分合闸,乃至线路故障(fault)等都会引起线路的过电压,统称为内部过电压。而线路、杆塔、地线(别称:避雷线)避雷线遭到自然雷击引起的过电压称为雷击过电压。

从超高压500千伏到特高压1000千伏,电压等级翻了一番,控制电压的允许值是简单的倍数关系吗?陈维江说“不是的”。他介绍:实际上,特高压允许运行电压升高的过电压裕量反而变小了。以运营电压做基础是1倍,在110千伏、220千伏时过载电压有3倍的裕度,当电压为500千伏时是2.0倍,750千伏是1.8倍,到1000千伏特高压时只有1.6倍的裕度。裕度,是指留有一定余地的程度。

“需求是要提高电压的传输等级,因为特高电压输送的能量大、距离长;但是从技术的要求上看,越是高电压等级,操作过电压允许的倍数越小,意味电压控制更加困难,”陈维江说。

使用什么手段抑制特高压内部过电压与雷击过电压呢?从2004年开始,中国电力科学研究院先后有几十位科研人员做1000千伏特高压交流输电系统(system)过电压的研究,研究课题包括标准电压选择、过电压与绝缘配合、防雷防护、同塔双回路系统断路器瞬态、稳态过电压与电磁暂态优化等十多项研究。这些工程急需的科技成果,特别是相关参数(parameter)经过仿真计算以及试验验证(Experimental)后,有力支撑了特高压设备研发与选型。

以抑制暂时过电压为例,最主要的设备就是电抗器,它也是特高压最重要的设备之一,因为线路在故障或无故障情况下甩负荷而引起电压突然升高,其幅值是按秒计算的,只能通过大容量的特高压电抗器有效限制工频过电压的幅值。在西安,中国西电集团公司副总经理、总工程师宓传龙的办公室,他向记者介绍了研制生产电抗器的过程,宓传龙获得度国家科学技术进步特等奖,排名第三。

制造电抗器是西电的强项。宓传龙毫不掩饰西电的技术优势,上个世纪他们曾为三峡工程研制了±500千伏直流输电换流变压器和平波电抗器,结束了中国该类电工大型装备依赖进口的局面。2008年,西电承接为中国首条特高压交流试验示范工程研制1000千伏级320Mva

  R、240Mvar(兆乏,是无功补偿装置的补偿容量单位)特高压并联电抗器。

结合广大使用者反馈的意见,而开发的全自动化仪器。本仪器选用单片机为主导,先设定后开机测试的方法,全部过程由微机自动运行控制,操作简单,方便适用。在运行中,绝缘油由于受到氧气、高温度、高湿度、阳光、强电场和杂质的作用,性能会逐渐变坏,致使它不能充分发挥绝缘作用,为此必须定期地对绝缘油进行有关试验,以鉴定其性能是否变坏。

“电抗器也叫电感器,主要起保证线路输送的最大功率,限制电网电压突变和操作过电压引起的电流冲击的作用。因为电抗器的额定电压是1100千伏,与变压器额定电压1000千伏比较,特高压电抗器的绝缘水平比特高压变压器高出5%左右”,他介绍说。

西电研制国内首台特高压电抗器的过程非常顺利:首先制定了设计主要方案和确定相关(related)参数,之后是制定电气方案、结构方案。在制定方案的过程中,如何验证(Experimental)参数?比如重绝缘参数?他们按比例制作了小模型,通过(tōng guò)波峰测量实验模拟产品冲击波,测量每个线圈的重绝缘电场是怎样分布的。之后整理数据和计算值进行比较,看其相似度是多少?哪个地方电压差异比较多。之后再做实验,再验证。当反复比较后没

有出现太大的梯度(陡度)时,基本证明设计没有问题了。“这个过程大概多长时间?”宓传龙回答:“主要是做模型的时间,真正做实验半个月就完成了”。


2008年6月30日,一列D26B落下孔自承式载重火车,载着单台重量近百吨的庞然大物,经过31个小时的行程,最终驶向国家电网特高压1000千伏南阳开关站。这是中国西电集团为中国首个特高压工程—晋东南—南阳—荆门特高压交流试验示范工程运送的特高压大件设备(shèbèi)——特高压电抗器。之后,重达200吨的西变1000千伏320Mvar特高压电抗器又运抵晋东南变电站……

难题之二:污秽环境下外绝缘子的配置

环境的恶化,对那个行业影响最大?如果说是电网并不夸张。我国大气污染的日益严重,工业生产排出的含盐废气,包括钠(Sodium)、钾(Potassium)、钙等,实时对输电线路绝缘进行攻击。

如果注意观察,在高压输电塔上悬挂一串串多盘伞状的绝缘子,它的下端就拴着高压线。日积月累飘落在绝缘子上的污秽灰尘,当遇到水分,包括(bāo kuò)雾、积雪融化和毛毛雨时,灰尘溶解瞬间变成了导电体,在电力场作用下出现强烈的放电现象,此时电网容易出现短路事故。绝缘子短路导致电网断电的重要原因,不是绝缘子本身被“击穿”,而是高压电沿着绝缘子表面的空气被“击穿”,电学称为“闪络”,俗称“污闪”。上世纪90年代办亚运会前,华北500千伏电网就曾发生过大面积污闪事故。

为了确保线路的安全运行,以往国际上通常采用停电清扫、不停电清扫和带电水冲洗方法。

测试仪是一种新颖的测量介质损耗角正切(tanδ)和电容值(Cx)的自动化仪表。可以在工频高电压下,现场测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗角正切(tanδ)和电容值(Cx)。以200千伏以上高压输电线路为例,据美国能源信息署(EIA)统计,美国200千伏以上高压输电线路只有30.7万公里,而中国达到51.4万公里,是美国的1.68倍。假设以高压输电两塔之间档距50米估算,约有1000万个输电塔需要人工经常清扫。上世纪80年代伴随空气污染的加重,电力科学家寻找到一种叫硅油的憎水性涂料,把它涂到陶瓷绝缘子表面,以增加绝缘子的憎水性。

随着各国的输电网向特高压、大容量、远距离输送方向的发展,传统绝缘子面临着巨大的挑战,使用复合材料绝缘子,不仅抗污闪性能好,也可减小塔头尺寸,同时减轻线路运行维护的工作量和停电次数,为电网带来巨大的经济效益。

在武汉特高压交流试验基地户外试验场,记者看到地上摆放包括陶瓷、玻璃与复合材料三种不同材质的绝缘子。陈维江对记者说:“在低电压等级的时候,陶瓷、玻璃、复合材料的都可以用,我们叫‘三分天下’,但是到了特高压不能再大量使用瓷绝缘子,一方面由于输电线路经过的绝大部分地区面临难以解决污秽的问题,另一方面沿用瓷绝缘子增加片数会增加塔的承重”。

使用复合绝缘子在超高压、特高压输电线路上的运行,国外积累一些经验,比如加拿大、美国、前苏联均在高电压等级电线路部分采用了复合绝缘子。中国建设特高压电网,工程技术人员也瞄准了具有高抗张强度(strength)和高抗冲击性且重量轻的硅胶复合绝缘材料。但是,在特高压电网使用复合材料绝缘子,最大的约束条件是环境污染对绝缘子的影响,这是上述国家没有遇到的,也是中国的国情。

武汉特高压交流试验基地邬雄主任向记者介绍,根据实际取样调查,中国不同地区的感染程度分为四个等级,一级相对比较干净,级别越高、污染程度越高。我国第一条晋东南—南阳—荆门特高压交流试验示范工程,全线环境评估为二级起步,最严重的区域达四级-重度污染,该线起始于山西境内的长治变电站。

“我们的环境条件与日本和俄罗斯有很大的差别,他们的参数不能套用”,邬雄说。我国1000千伏交流输变电工程,绝缘子在整个工程造价中约占7%,在设计和设备选型阶段,绝缘子污秽外绝缘配置问题是输电线路设计的重大问题之一。

时间回到2008年,在武汉特高压试验基地巨大的环境气候实验室,工程技术人员按照室外真实型环境布置,按比例配成污秽物并刷在绝缘子上,经过干燥后的绝缘子串被高高挂起。之后,大小不同颗粒的冷雾、热雾轮番吹拂绝缘子表面,对其进行雨、雾、污秽特性试验,获得了包括绝缘子串长与人工污秽耐受电压的关系、不同串型下的污耐压特性以及附灰密度、上下表面不均匀积污对耐压影响等重要的实验数据。或者说,是获得了在确保线路安全运行同时,实现线路绝缘子的不清扫或者少清扫的重要参数。

武汉特高压交流试验基地是目前世界领先的实验室,具备包括(bāo kuò)1000米单回特高压试验线段、1000米同塔双回特高压试验线段、电磁环境实验室、环境气候实验室等试验装置的特高压交流试验手段。截至目前,实验基地共进行了31万多组试验,取得有效数据约7万组,完成特高压研究专项课题5项,为特高压交流试验示范工程的建设和运行提供了急需的科学数据。

目前,我国新建输电线路中,复合绝缘子的使用比例达到了43.7%,在特高压线路中,这一比例高达2/3。复合绝缘子为我国大电网的建设和运行提供了可靠保障,技术处于世界领先水平。

难题之三:控制电磁环境与控制电场

设想一下,如果一条上千公里的特高压输电线全线出处发生频闪的蓝色晕光,并伴随发出“嘶嘶”的声音,会是个什么情形?

蓝色晕光被称为电晕,英文词是Corona,与日冕共用,与日冕产生高温和辐射(Radiation)同理,发生电晕会出现放电现象,它产生的高频脉冲电流以及多高次谐波,将对无线电通讯造成干扰。输电线路所经之地,无线信号接收质量下降,尤其在雨、雪、雾天状况下会引起电晕损耗,造成电能的极大浪费。所以,控制导线导体表面的电场,抑制产生电晕,成为建设高电压等级输电网的第三个难题。

前苏联是世界上最早开展特高压输电技术研究的国家之一,也是迄今为止世界上唯一有特高压输电工程运行经验的国家。1985年8月,世界上第一条1150千伏线路埃基巴斯图兹——科克契塔夫——库斯坦奈在额定工作电压下带负荷运行,但是,放电声和电晕光环一直困扰着科学家。前苏联特高压输电线路自建设初始,可听噪声与电晕指标就稍高于规

定值,但由于线路大部分处于地广人稀地段,比如送端埃基巴斯图兹,加之后来降压到500千伏运行,实际上特高压的电磁环境控制,是个尚未被攻克的难题。


中国与前苏联经济资源地理分布状态不同,中国特高压线路的输送终端是沿海工业发达与人口绸密地区,如果不能有效限制在高电压与大电流作用下产生的强电磁环境,不仅仅是高频脉冲电流对无线信号的干扰,所产生的臭氧和氮氧化物将严重污染环境,最大的问题是工频磁场对人体、动物乃至植物的损害。在高压输电线路上如何限制电晕引起的能量损耗和电磁波对无线电的干扰,成为中国建设特高压输电网技术创新的另一个战场。

国际非电离辐射防护委员会(ICNIRP)与电气和电子工程(Engineering)师协会(IEEE)规定了工频电场和磁场的限制值:工频电场强度(strength)的限制值,线下最大电场强度为10-15千伏/米,公众活动区或邻近民房电场强度小于5千伏/米;工频磁场不得超过100微特斯拉(工频磁场磁感应强度单位)。当中国建设特高压试验工程的时候,上述两个指标仍是空白,此前,只有对500千伏以下输电网的限制值标准。在中国特高压电网参数指标设计阶段,中国选择了国际的通行限制值标准。

陈维江对记者介绍说:“高压架空线路在其周边产生的工频电场强度主要取决于线路电压等级的高低,随电压等级的提高,周边电场强度呈递增现象,在特高压输电线路的设计阶段,怎样有效的控制电磁环境,抑制电晕现象,导线结构、对地高度和金具优化设计是十分重要的”。

科学家们花了两年的时间,通过大量的仿真计算得出结论:在其他参数不变的情况下,随导线截面的增大,输电线路的表面场强减小,电晕损失也相应最大化减少,无线干扰与噪音污染也大大降低。科学家们通过分析1000千伏交流输电线路不同分裂形式和不同子导线直径的导线表面电位梯度、导线起晕电压、导线电晕损耗、无线电干扰和可听噪声,比较了各种导线方案的优劣(yōu liè) ,最终结合工程提出了满足电气性能和机械特性要求、适合于我国特高压输电的导线截面及分裂形式,900平方毫米大截面钢芯铝绞线和扩径线最终研制成功。

如果细心观察特高压输电塔上的导线,这种超大截面的导线被固定在有8个孔径的间隔棒中,高等级电压正是通过八分裂的导线传输电流。介质损耗采用中央处理器、大规模集成电路等先进技术组成自动化测试设备,操作过程全自动化,并能通过面板配置的微型打印机打印试油试验数据,该设备与普通仪表及同类型仪器相比具有试验稳定性好,精度高,并具有良好的操作性,该设备在试油操作中有多种试验运行方式。到2020年,我国规划将建设2万多公里特高压线路,为今后特高压输电线路更大输送容量考虑(consider),国家电网正在进行更大截面1000、1050、1120平方毫米的架空导线选型方案的研究。新型导线产品的研制已经成为特高压输电工程建设中迫切需要解决的问题。

难题之四:特高压设备(shèbèi)的研制

在武汉,记者参观了两个变电站:其一是建于1982年的凤凰山变电站,这是我国第一座500千伏变电站;其二是荆门变电站,它是我国首个1000千伏特高压交流试验示范工程三个变电站之一。仅就感官上体验,两个变电站输电等级相差一倍,但在特高压荆门变电站设备场地,只能听到微弱的电磁声,测量噪音分贝值是36分贝,而凤凰山变电站的场地噪音是60分贝。荆门特高压变电站所有的设备为中国制造,而凤凰山变电站主要设备都是从日本进口。

国际上对特高压输电线路可听噪音的限值是50-60分贝,日本对环境要求严格,限值为50分贝,美国、意大利等国可听噪音限值处于50-60分贝之间。

毫无疑问,变电站噪音来自变电站的各种设备,包括特高压变压器(Transformer)、并联电抗器、封闭开关以及特高压避雷器、电压互感器、高压绝缘子等等。为什么1000千伏变电站环境噪音低于500千伏变电站,唯一解释只有一个:中国电工制造技术已经达到世界领先水平。

宓传龙带领记者在西电集团生产车间观看电抗器的生产现场:电抗器内部是一个中间套有线圈,外围用钢片做成饼状围起来的柱子,一块块大理石把铁饼隔开,专业术语叫“器隙”。“由于铁芯是断开的,增加了磁路的磁阻,根据磁路定律,电感产生很大的漏磁现象,而漏磁会引起过热,带来的问题就是振动和噪音,甚至会烧坏设备”。

如何解决漏磁与振动噪音呢?他们改变750千伏和500千伏电抗器的结构,把单柱变成两柱。与一个柱子比较,每个单柱容量小了,有效地控制了漏磁。为了控制噪音,特别研制了压缩弹簧,通过(tōng guò)强有力的螺杆压紧铁芯。毕竟是50赫兹的交流电,铁芯之间压得再紧还是有噪音和振动,于是,他们采取了进一步的减震的措施,比如加减震垫、减震弹簧等等。宓传龙自豪地说:“电抗器结构上磁分路、磁屏蔽、电场屏蔽,以及两个柱子串联、绝缘以及噪音减震,都是我们的创新”。

2008年2月13日,西电研制成功我国自主设计、自主制造的首台1000千伏、240Mvar高压并联电抗器,一次性通过实验,局放量30PC(扣除背景噪音后为零局放);最大振动32微米。而俄罗斯32千伏安的电抗器,噪音超过80分贝,西电同等型号的电抗器噪音只有40分贝。应该说,中国生产的特高压电抗器达到了世界最高水平。

在西电巨大的实验室里,记者看到特高压最关键的设备变压器。当被告知这是一台1700千伏特高压电力变压器时,受到巨大震惊。人所共知,当下中国特高压输电网使用的只是1000千伏变压器!当没有喘过气来的时候,巨浪再一次涌来,西电已经研制成功另一台2000千伏的变压器!

宓总说:1700千伏和2000千伏的变压(气压变量)器是为电抗器实验而研制的。因为变压器可以通过(tōng guò)其他工频变压器做实验,而电抗器的实验需要高电压以及大负荷,所以实验变压器的电压必须高于电抗器以及大容量,通过超高压变压器对电抗器进行电流补偿。我们要做好抗电器,首先是要做好实验变压器。

这个时间节点更令人吃惊:1700千伏实验变压器的首次试验是2007年春节的大年初二。做实验时气氛非常紧张,以致宓传龙不敢到现场,他担心:会不会放炮?试验电压升到1100千伏延续了2个小时,当试验电压在10秒钟内上升到1340千伏并稳定后开始计时,试验过程延续了一分钟。


宓传龙强调说,这两台实验变压器是按照工程要求制作的,一般来讲,实验变压器比工程变压器的要求更高。当记者问道,为什么还要做2000千伏变压器?他回答道:我们正在研制±1100千伏的特高压直流输电,未来的电压有可能升高到千伏,依靠什么对设备进行实验呢?所以我们必须要先行一步。

此前,中国500千伏输电网设备需要进口大容量变压器、电抗器等,而现在中国公司已建成世界同行中产能最大、水平先进、主辅配相对完整的交直流输变电成套设备制造体系,这是输变电设备制造业近十年来巨变,特高压设备制造处于世界领先的地位。

相关数据(data)显示,目前,国内企业已占据我国输变电设备市场主导地位,并进军国际市场,实现了高端产品出口零的突破。国内企业在高端产品市场(500千伏及以上)份额,已从年的42%上升至年的63%。2009年以来,在国际金融危机的不利影响下,特高压主设备制造企业出口不降反升,500千伏以上产品的出口总额达100亿元、年增长率超过50%。特高压建设不仅提升了我国高端装备制造产业-电工制造的水平,也提高了全国乃至全球市场的竞争力。

}

我要回帖

更多关于 怀孕有啥异样 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信