请问芯片集成电路里面怎么加入电阻,电容的那么细长电阻会很大电压不会很高吗?电流不会很大?击穿烧坏

站在发明者的角度来看三极管的发明和用途

一定要站在发明者的角度来看问题,只有这样,一切问题才都能迎刃而解。因为模电的内容就是发明---使用---发现问题---改进---再发明―再使用的过程,是我们学习前人发明和使用的东西。

我们就以二极管和三极管为例,二极管是控制导线中电子的流动方向,而三极管是控制导线中流动电子的多少。这也是“电子技术”的根本。理论搞明白了实验就简单了。

下面主要是以三极管为例来说明导线中电流的控制,要想控制一根导线中的电流,首先要把这根导线断开,断开的两端我们分别叫做C端和E端(C和E实际上是输出回路),如果我们在C和E之间加个器件,这个器件能使电流从C端流进并能从E端流出来,同时这个电流又能被我们控制住,那么这个器件就成功了。

为了实现上述要求,接下来我们就在C-E之间放一个NPN(或PNP)结构的半导体,可是,现在的问题是,在这种情况下无论怎样在C和E之间加电源,C-E这根导线始终都不会有电流。我们又知道,电子流动的方向与人们定义电流的方向相反(这是因为当时人们以为电线里流过的是电流),所以,我们将中间半导体引出一个电极(B极),在B-E之间(实际上是加在发射结上,见PN结特性)加一个正向电压,这时发射区就会向基区发射电子从而形成E极流出的电流,但是,要想实现这个电流是从C端入、从E端出,则必须要把发射区发射的这些电子都收集到C极去,这样我们需要在C和E之间加正向电压,使集电结处于反向击穿状态,使电子能顺利收集到C极,这个收集电子的能力要比发射电子的能力强,它就像一个大口袋,你发射区发射多少我就收多少(这样就能理解三极管输出特性曲线了,当B极电流一定时,随着CE电压的增加,C极电流就不再增加了,因为B极电流一定时,发射区发射的电子数量就一定了,你收集的能力再强也要不到多余的电子了),这样,这个器件就成了,可以实现电流从C端到E端(因为当初我假设它们之间是被我断开的导线两端),最理想的是流进C端的电流就等于E端流出的电流,同时这个电流又被一个BE电压(或信号)控制,但是,三极管不是一个理想的器件,因为C端电流不等于E端电流,有一部分电流流过B极,我们尽量使C端电流等于E端电流,所以,这就是为什么在工艺上要使基区浓度要低而且还要薄,同时集电结的面积还要大的根本原因。

Uce电压的作用是收集电子的,它的大小不能决定Ic的大小,从三极管输出特性曲线可以看到,当Ib一定时(也就是Ube一定时),即使Uce增加,Ic就不变了,但是曲线有些上翘,其实这是半导体材料的问题。实际上,Ie是受从输入端看进去的发射结电压控制的(可以参见三极管高频小信号模型),加Uce电压的时候发射结已经处于导通了,它的影响不在发射结而在集电结,加Uce电压是为了让Ic基本等于Ie,所以说Ic受发射结电压控制,人们为了计算方便把这种控制折算成受Ib控制,就是因为说成这样,使得人们不太容易理解三极管工作的原理。

从输出回路受输入回路信号控制的角度来看,Ic不是由Ie控制的,但是,Ic其实是由Ie带来的,所以,也可以说Ic受Ie影响的,这也得受三极管制造工艺影响,如果拿两个背靠背二极管的话,怎么也不行。

尽管三极管不是一个理想器件,但是,它的发明已经是具有划时代意义了。由于它的B极还有少量电流,因为这个电流的存在意味着输入回路有耗能,如果我不耗能就能控制住你输出回路的电流,那这个便宜就大了,所以,后来人们发明了场效应管。其实,发明场效应管的思想也是与三极管一样的,就是为了用一个电压来控制导线中的电流,只是这回输入回路几乎不耗能了,同时,器件两端的电流相等了。

从使用者的角度(非设计者)来看看三极管的应用:

三极管的两个基本应用分别是“可控开关”和“信号的线性放大”。

可控开关:C和E之间相当于一个可控开关(当然。这个开关有一定的参数要求),当B-E之间没有加电压时,C-E之间截止(C-E之间断开);而当B-E之间电压加的很大,发射区发射的电子数量就多,C极和E极的电流就很大,如果输出回路中有负载时(注意,输出回路没有负载CE之间就不会饱和),由于输出回路的电源电压绝大部分都加到负载上了,CE之间的电压就会很小,CE之间就处于饱和状态,CE之间相当于短路。在饱和情况下,尽管C极电流比基极电流大,但是,C极电流与输入回路的电流(基极电流)不成β的比例关系。

从另一方面看饱和:从输出特性曲线可以看到,IB一定时VCE电压不用很大,那个输出特性曲线就弯曲变平了,这说明收集电子的电压VCE不用很大就行,其实不到1V就行,但是,实际上我们在输出回路都是加一个电压很大的电源,你再加大VCE也没有用,我们看到,IB一定时VCE增加后对IC的大小没有影响(理想情况),所以要想把发射的电子收集过去,VCE根本不用很大电压。

但是,通常情况下,我们会在输出回路加入一个负载,当负载两端电压小于电源电压时,电源电压的其它部分就加在CE两端,此时三极管处于线性放大状态。但是,负载两端电压的理论值大于电源电压时,则三极管就处于饱和状态,这种情况IC不用很大也行。

所以不要以为VCE一定很大三极管集电极才能收集到电子,可以看到收集电子的电压很小就行。对于饱和的问题来说,除了上一段文字中说到的电流很大引起饱和外,我们还可以从电压的角度来看,假设三极管b=50,电源电压为12V,基极电流为40微安,则集电极电流就是2毫安,如果集电极接一个3千欧姆电阻,则VCE=6V,而这个电阻换成30千欧姆时,VCE趋于零了,这种情况下三极管也是饱和了,所以从电压角度来看,集电极电流不一定很大,在选择合适负载电阻的情况下,三极管也可以处于饱和状态,所以,饱和与负载有关,如果电源电压很大,那饱和时VCE就这么一点点电压而言那当然是微不足道的,所以,很多地方就将它约等于零了,但是并不能说它没有电子收集能力。

信号的线性放大:这种情况下,C极电流与B极电流成线性比例关系IC=βIB(BE之间电压要大于死区电压,同时,VCE不趋于零),而且,C极电流比B极电流大很多,前面已经知道,C极电流的大小受BE电压控制(人们为了分析问题方便,将这种控制关系说成是C极电流受B极电流控制)。实际上,马路上到处跑的汽车就是一个放大器,它是把驾驶员操作信号给放大了,它也是线性放大,是能量的放大,而多余的能量来自于燃烧的汽油。

模电这门课从三极管小信号模型开始的绝大多数内容都是讲小信号放大问题,共射极、共集电极、共基极的4个电路是基本,其它的是由他们组合而成的,它们的电路组成、电路交直流分析、电路性能分析是关键。

其它的就是功率放大的问题、模拟集成运算放大器内部结构设计问题、运放的应用、如何减少非线性失真和放大稳定问题(负反馈)、正弦波产生(正反馈)等等。

模电从细节和总体上把握。

从使用者的角度来看,其实,模电这门课并不难,学生往往被书中提到的所谓少子、多子、飘移、扩散等次要问题所迷惑,没有抓住主要问题,有些问题是半导体材料本身存在缺陷导致的,人们为了克服这些缺陷而想出了各种解决办法,所以,模电中有许多是人们想出的技巧和主意。从三极管三个电极连接的都是金属的角度来看,金属中只有自由电子的定向流动才有电流,金属中哪有什么空穴之类的东西,如果把人们的视线停留在三极管的内部,那一定使人们不容易理解,如果你跳出来看问题,你就会理解科学家当时为什么要发明它,也会使你豁然开朗。但是,从设计者角度来看,需要考虑的问题就很多了,否则,你设计出来的器件性能就没有人家设计的好,当然也就没有市场了。如果谁能找到一种材料,而这种材料的性能比半导体特性还好,那么他一定会被全世界所敬仰。所以,学习模电的时候,一定要用工程思维来考虑问题,比如,为什么要发明它?它有什么用途?它可以解决什么问题?它有哪些不足?人们是如何改进的?等等。

三极管要工作在饱和或截止状态,此时C和E之间相当于可控开关,B极加输入信号,为了防止三极管损坏,B极要接限流电阻,余下的问题就是,所控制的负载应接在C极还是E极?它的功率有多大?驱动电压多大?电流多大?你选的三极管能否胜任?不胜任怎么办?改用什么器件?低压和高压如何隔离?等等。

这种情况下,C极电流是B极电流的β倍,以三极管放大电路为例:

(1)直流工作点问题,为什么要有直流工作点?什么原因引起工作点不稳定?采取什么措施稳定直流工作点?

以NPN管子为例,共射、共基、共集电极三个电路的直流都是一个方向。无论三极管电路的哪种接法,它们的直流电流方向都是一样的,输入(发射结)加入微弱交流小信号后,只能使这些输出回路电流发生扰动,总体上不能改变这些电流的方向,但是,这个输出回路电流中有被输入交流信号影响的扰动信号,我们要的就是这个扰动的信号(输出交流信号),这个扰动的信号比输入信号大,这就是放大,也可以说,放大其实是输出回路电流受输入信号的控制。

如果直流工作点设置合理时,那个扰动信号就与输入交流小信号成比例关系,而且又比输入信号大,我们要的就是这个效果。

(2)交流信号放大问题,共射极、共集电极、共基极电路的作用、优点和缺点是什么?如何克服电路的非线性?为什么共射--共基电路能扩展频带?为什么共集电极放大电路要放在多级放大电路的最后一级?多级放大电路的输入级有什么要求?人们在集成电路中设计电流源的目的是什么?它的作用是什么?如何克服直接耦合带来的零点漂移?为什么要设计成深负反馈?其优点和问题是什么?深负反馈自激的原因是什么?什么是电路的结构性相移?什么是电路的附加相移?什么情况下电路输出信号与输入信号之间出现附加相移?等等。

(3)集成运算放大器,为了克服半导体器件的非线性问题(不同幅度信号的放大倍数不一样),人们有意制成了高增益的集成运算放大器,外接两个电阻就构成了同相或反向比例放大电路,这时整个电路的电压放大倍数就近似与半导体特性无关了(深负反馈条件下),放大倍数只与外接的两个电阻有关,而电阻材料的温度特性比半导体材料好,同时线性特性也改善了。在计算的时候注意运用“虚短”和“虚断”就行了,模电学到这里那就太简单了,所以,如果不考虑成本时谁还会用三极管分立元件组成的放大电路,还得调直流工作点。集成运算放大器的其它应用还很多,如有源滤波器、信号产生电路等。

负反馈自激振荡与正弦波产生电路的区别

负反馈自激振荡是由于某个未知频率信号在反馈环路中产生了额外的180度的附加相移,负反馈电路对这个频率信号来讲就变成了正反馈,同时,对这个频率信号的环路增益又大于1,这种情况下,负反馈电路就自激了(对其它频率信号,此电路还是负反馈)。而正弦波振荡电路是人们有意引入的正反馈,可以说对无数个频率信号都是正反馈,既然这样,环路中就不用有附加相移了,但是,这样的信号太多了,所以,人们需要在反馈环路中设计一个选频电路来选择某一个频率信号,当然,对被选取的信号来讲,这个选频电路就不需要有额外相移了。

以上大致总结了一些问题,仅供参考

}

 对于开关电源板的维修,要在理解电源板的工作原理,正确识别电路图和实物图的基础上进行,一是在电路原理图中弄清楚整个电路的作用、电路组成、各个单元电路的关系、单元电路的工作原理;二是在电路板上找到相关电路的位置、电路元器件的实物,维修时找到测量电压和电阻的测试点,实现理论分析与维修实践的结合,在工作原理的指导下,快速准确的在电路板实物上进行检测和维修。

一 、电源板常用测试点

     对于判断电源板各个单元电路是否工作正常的测试点,要做到心中有数。一般对元器件较大、易于测量的关键点电压进行测量,判断故障范围。常见的测试点如下:

1.整个电源板的测试点

     判断整个电源板是否正常的测试点是输出连接器的各引脚电压,该电压一般直接标注在连接器的引脚旁边。

      判断副电源是否正常,测量连接器的副电源供电输出引脚电压,待机副电源输出电压正常时为5V或3. 3V。无电压输出,故障在副电源,先测量市电整流滤波后滤波电容两端的300V供电,无300V供电,检查熔丝、抗干扰电路和相关整流滤波电路;再查副电源驱动电路的启动电压,供电和启动电压正常,再检查副电源电路。

判断主电源是否正常,测量连接器的主电源供电输出引脚电压,主电源输出电压一般为12V、24V,个别电源板还有18V、5V、9V等电压输出。无电压输出,故障在主电源,先测量驱动电路VCC供电和PFC大滤波电容两端为主电源提供的370~400V供电,若无vCc供电,检查开关机VCC控制电路;370V和400V电压不正常,检查市电整流滤波和PFC电路;VCC和PFC提供的供电正常,再检查主电源电路。

      判断开关机控制电路是否正常,先测量连接器开关机控制ON/OFF或PS-ON引脚电压多为开机时高电平3~5V、待机时为低电平0V,只有少数电源板与此相反。ON/OFF或PS-ON电压正常,但开关机控制电路无VCC供电输出,再检查VCC电压整流滤波产生电路和开关机VCC控制电路。

       判断PFC电路是否正常测量PFC大滤波电容两端电压。正常时待机状态为300V,开机状态上升到370~400V;如果仅为300V,则是PFC电路未工作,先检查PFC电路VCC供电电路,再检查PFC电路;如果市电整流滤波后电压为0V、路,常见为熔丝熔断。

      液晶彩电电源板的维修方法与CTR彩电电源电路的维修方法基本相同,除了采用常见的直观检查法、电阻测量法、电压测量法、路结构和特点,还可采用以下几种方法:
    外接电压法就是将机外或机内适合需求的电压或信号,接入电源板相应的位置,为相关路供电,供电后测量开机电压和观察故障现象,判断故障所在。
     在维修开关电源时,在电源主输出端(一般为因为开关管在截止期间,为区分故障是出在负载电路还是电源本身,12V、18V或24V)加上假负载进行试机。经常需要断开负载,之所以要接假负载,
储存在开关变压器一次绕组的能量向二次侧释放,如果不接假负载,则开关变压器储存的能量无处释放,极易导致开关管击穿损坏。关于假负载的选取,一般选取(30~60W)/12V或24V的灯泡(汽车或摩托车上用)作假负载,根据灯泡是否发光和发光的亮度可知电源是否有电压输出及输出电压的高低,优点是直观方便。为了减小启动电流,也可采用30W的电烙铁作假负载或采用大功率600~1000Ω电阻。

     液晶彩电的开关电源较多地采用了带光耦合器的直接采样稳压控制电路,当输出电压高时,可采用短路法来测定故障范围。    短路检修法的应用步骤:先把光耦合器的光敏接收管的两引脚短路,相当于减小了光敏接收管的内阻,如果测主电压仍未变化,则说明故障在开关变压器的一次侧电路;反之,故障在光耦合器之前的电路。    需要说明的是,短路法应在熟悉电路的基础上有针对性地采用,不能盲目短路,以免将故障扩大。另外,从检修的安全角度考虑,短路之前应断开负载电路。

开路法就是将关键点或组件切除法。例如,对有关电路或有关组件进行开路,若故障消除,则故障就在切除的部分。例如,电源中遇到保护故障,可以断开保护检测电路与保护执行电路的连接,进行故障判断;遇到部分电路损坏又苦于没有配件时,可以切除该电路,然后给控制电路模拟一个正常信息。例如,遇到PFC部分外部控制元器件损坏时,就可以拆掉外部控制元器件,直接将控制信息传输到PFC电路,使PFC得到供电照样正常工作,一旦买到配件,尽量恢复电路原貌。

所谓串联灯泡法,就是取掉输入电路的熔丝,用一个60W/220V的灯泡串在熔丝两端。当通入交流电后,如灯泡很亮,则说明电路有短路现象。由于灯泡有一定的阻值,如60W/220V的灯泡,其阻值在通电发热后约为500Ω,所以能起到一定的限流作用。这样,一方面能直观地通过灯泡的明亮度来大致判断电路的故障;另一方面,由于灯泡的限流作用,不会立即使已有短路的电路烧坏元器件。直至排除短路故障后,灯泡的亮度自然会变暗,最后再取掉灯泡,换上熔丝。

      代换法分为元器件代换和电源板整体代换。现在液晶彩电开关电源中,一般使用一块电源控制芯片,而此类电源芯片现在已经非常便宜。因此,当怀疑控制芯片有问题时,建议使用代换法进行更换。

      当电源电路板因故无法修复时,也可采用整体代换的方法维修。代换时需挑选输出电压相同、输出电流和功率等于或大于被代换的电源板,并注意开关机电路的控制电路与新电源板匹配。另外,当选择的电源板缺少一组电压输出时,如果缺少的一组电压较低,可用较高的一组输出电压,用三端稳压器稳压后替换,以满足代换需求。

在液晶彩电电源板中,副电源为主电路板CPU控制系统提供5V供电;PFC并联开关电源电路,把全桥整流后的300V电压提高到380~400V,这部分因高电压易损坏;PWM控制主电源电路,输出5V、12V、18V、24V,这部分是功率消耗大的部分,也容易损;过电流、过电压、过热保护电路检测到故障时,迫使电源输出电压降低或停止工作。电源板主要引发的故障现象有,开机黑屏幕、无图像、无伴音,输出电压过高或过低,自动关机,花屏等。

      液晶彩电电源板常见的故障现象是,开机烧熔丝管,开机无输出、有输出但电压高或低等。由于大家对这类故障已经比较熟悉,故这里简要介绍这部分电路的检修思路。

检修时,可通过观察待机指示灯是否点亮,测量关键的电压,解除保护的方法进行维修。应首先对直流输出端的各个电压进行检测,若只有一路上的电压不正常,则检测该支路输出端上的电阻器、滤波电容器以及半导体器件即可。若各路电压都没有输出,则应检测电源电路中的开关变压器、二次侧输出滤波电容器、桥式整流堆、开关场效应管、开关集成电路、光耦合器、300V滤波电容器、熔丝管等是否损坏。

3.1 待机指示灯不亮
     测量AC 220V输入电路熔丝或大限流电阻是否熔断,如果已经熔断,说明开关电源存在严重短路故障。先测PFC输出电路大滤波电容器两端电阻是否正常,如果该电容电阻很小或为0,则说明大滤波电容器或PFC输出端主、副电源发生短路漏电故障,主要对以下电路进行检测:
 1)检查PFC输出端大滤波电容器是否击穿短路。
 2)检查副电源厚膜电路、主电源MOSFET开关管是否击穿,如果击穿,进一步检查稳压控制电路的光耦合器、误差放大器,检查开关管D极的尖峰脉冲吸收电路是否正常,避免造成厚膜电路或MOSFET开关管再次损坏。
    如果测量PFC输出端大滤波电容器两端电阻基本正常,则短路漏电故障在PFC整流管之前的电路中,主要对以下电路进行检测:
 1)检查市电输入电路压敏电阻是否击穿,检测抗干扰电路电容器是否击穿短路。
 2)检查PFC电路开关管是否击穿,如果已经击穿,进一步检查升压电感;检查驱动控制集成电路的稳压采样电路分压电阻,一是PFC输出电压采样分压电阻和市电整流滤波电压采样分压电阻,二是检查过电流保护电路的采样电阻是否连带损坏。

     如果测量熔丝未断,说明开关电源不存在严重短路故障,但指示灯不亮,则说明是副电源电路未工作,主要对以下电路进行检测:

 1)测量副电源有无电压输出。如果有5V电压输出,查电源板与控制板之间的连接器连线和主板5V负载控制系统。

 2)如果测量副电源无电压输出,首先测量厚膜电路内部或外部MOSFET开关管D极是否有300V电压。如果无300V电压,检查AC 220V市电整流滤波电路的输出端有无300V电压输出,若无300V电压输出,检查市电输入电路和整流桥是否发生开路故障;如果有300V电压输出,检查副电源变压器一次绕组是否发生开路故障。

 3)对于有启动供电的集成电路,还有检测副电源集成电路的启动电压或VCC供电电压,无启动和VCC供电电压,检查相应的启动电路和VCC供电整流滤波电路。

 4)如果300V电压和启动、VCC供电电压正常,测量副电源有无脉冲电压输出,无脉冲电压输出,故障在驱动控制集成电路或厚膜电路,否则故障在功率输出开关管或开关变压器二次侧的整流滤波电路。另外,5V的负载电路控制系统发生严重短路故障,也会造成副电源无电压输出。

      指示灯亮,说明副电源正常。可按遥控器上的“POWER”键,测电源板连接器的开关机控制引脚PS-ON电压是否为开机电平,多数电源板的开关机电压在开机状态为高电平,少数电源板的开关机电压在开机状态为低电平。

      如果开关机电压为待机电平,则故障在主电路板微处理器控制系统,做如下检查:

 1)查主板上的微处理器控制系统的5V供电电压、RST复位信号、时钟振荡信号三个工作条件。

 2)检查微处理器的I2C总线电压,如果不正常,检查相关的总线传输电路、被控电路等,测量面板矩阵按键是否有短路、漏电故障,必要时断开矩阵电路,遥控开机试试。

        如果测量开关机电压为开机电平,则故障在副电源电路,应检查如下电路:

      1) 测量主电源开关变压器的二次侧有无直流电压输出。如果开机的瞬间有电压输出,然后输出电压降为0V,说明主电源保护电路启动,重点检查过电流保护电路和过电压保护电路。

      2)如果测量主电源始终无电压输出,说明主电源未工作,测量驱动控制集成电路有无启动电压,若无启动电压,检查相关启动电路;测量驱动控制集成电路有无VCC供电,若无VCC供电,检查相关的开关机控制电路和VCC电压形成电路。

      3)测量驱动控制集成电路有无PWM驱动脉冲。有PWM驱动脉冲,故障在功率输出电路,检查MOSFET开关管、开关变压器和二次侧整流滤波电路;无PWM脉冲输出,则检查驱动控制集成电路及其外部电路,必要时更换驱动控制集成电路。

如果测量主电源的供电仅为300V,则是PFC电路未工作,会引发主电源带负载能力差的故障,严重时会引发待机状态正常,二次开机自动保护关机的故障。主要对PFC电路进行检测:

    1)测量PFC电路有无VCC供电,若无VCC供电,检查开关机控制电路与VCC相关的控制电路和VCC供电产生电路。

    2)测量PFC校正电路有无激励脉冲输出,若无激励脉冲输出,检查驱动集成电路及其外部电路,有激励脉冲输出,检查输出电路MOSFET开关管和储能电感、PFC整流滤波电路。

3.3 输出电压过高/过低

       直流输出、采样电阻、误差取样放大器(如TL431)、光耦合器、电源控制芯片等电路共同构成了一个闭合的控制环路,在这一环节中,任何一处出问题都会导致输出电压升高或降低。

       如果测量电源板输出电压过高,对于有过电压保护电路的电源,输出电压过高首先会使过电压保护电路工作。此时,可断开过电压保护电路,使过电压保护电路不起作用,测开机瞬间的电源主电压。如果测量值比正常值高出1V以上,说明输出电压过高。实际维修中,以采样电阻变值、精密稳压放大器或光耦合器不良为常见。

       如果测量输出电压过低,根据维修经验,除稳压控制电路会引起输出电压过低外,还有其他一些原因会引起输出电压过低。主要有以下几点:

   1)开关电源负载有短路故障(特别是DC-DC变换器短路或性能不良等)。此时,应断开开关电源电路的所有负载,以区分是开关电源电路不良还是负载电路有故障。若断开负载电路后电压输出正常,说明是负载过重;若仍不正常,说明开关电源电路有故障。

   2)输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。

   3)开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。

   4)开关变压器不良不但会造成输出电压下降,还会造成开关管激励不足从而屡损开关管。

   5) 300V滤波电容不良或PFC电路不工作,造成主电源供电过低,电源带负载能力差,一接负载输出电压便下降,甚至造成欠电压或过电流保护电路启动。

3.4  屏幕上有杂波干扰或花屏

      液晶电视机屏幕上有杂波干扰或花屏的主要原因:电源板二次侧输出滤波电容器漏电,造成主信号处理和控制电路板供电不足,供电电压低、电流小,主信号处理和控制电路板不能够完全地正常工作,输出的信号不正常,最终造成图像还原不正常,引起花屏的现象。

      维修时,主要对电源板各路输出电压进行检测,哪一路输出电压不足,对该路整流滤波电路元器件进行检测,特别是检查滤波电容器是否失效漏电,检查整流二极管正向电阻是否增大。

 液晶彩电电源板往往设有完善的保护电路,当开关电源发生过电压、过电流故障时,多会引起保护电路启动,进入保护状态,开关电源停止工作,看不到真实的故障现象,给维修造成困难。维修时,可采取测量关键点电压,判断是否保护和解除保护,观察故障现象的方法进行维修。

  1.根据故障现象,判断是否保护

      如果开机的瞬间,开关电源启动,并在开关电源变压器的二次侧有电压输出,几秒后开关电源停止工作,输出电压降到0V,多为保护电路启动所致。

  2.测量关键点电压,判断哪路保护

      在开机的瞬间,测量保护电压翻转电路或保护执行电路的关键点电压,如晶闸管的G极电压或晶体管的B极电压,多数保护电路晶闸管的G极电压或晶体管的B极电压正常时为低电平0V。如果开机时或发生故障时,G极电压或B极电压变为高电平0. 7V以上,则是保护电路启动。

     当保护执行电路的输入端,设有两路以上故障检测电路时,如果每路检测电路设有隔离二极管,则在开机后保护前的瞬间,测量隔离二极管的正极电压,哪个隔离二极管的正极为高电平,则是该二极管相关的保护检测电路引起的保护。

3.解除保护,观察故障现象

      确定保护之后,可采解除保护的方法,开机测量开关电源输出电压和负载电流,观察故障现象,确定故障部位。为了防止开关电源输出电压过高,引起负载电路损坏,建议先接假负载测量开关电源输出电压,在输出电压正常时,再连接负载电路。

      全部解除保护:将保护执行电路晶闸管的G极或晶体管的B极对地短路或将晶闸管或晶体管拆除,即可解除保护,开机观察故障现象。

      逐路解除保护:对于晶闸管或晶体管的B极外部接有两路以上保护检测电路的,可逐个断开保护检测电路与保护执行电路之间的隔离二极管、隔离电阻等连接电路。每断开或解除一路保护检测电路的隔离二极管,进行一次开机实验,如果断开哪路保护检测电路的隔离二极管后,开机不再保护,则是该电压过高引起的保护。

      如果解除保护后,液晶彩电工作正常,电源板输出电压正常,则是保护电路检测元器件发生变质、漏电故障,多为保护采样电路的分压电阻变质,过电压保护稳压二极管漏电,电压翻转电路的晶体管或晶闸管损坏等;否则是相关稳压电路、负载电路发生故障。

    由于电源板与市电输入直接相连接,维修中一旦人体不小心碰到一次侧电路,就会发生触电事故;另外采用示波器测量波形时,如果接地或测试点弄错,还会烧坏示波器,因此建议使用1:1的隔离变压器进行维修,如果有调压功能的隔离变压器更好,可通过电压的调整,测试电源板的电压适用范围。

2.注意对大电容器放电

     注意停电后进行电阻测量时,将大电容器放电。维修无输出的开关电源,通电后再断电,由于电源不振荡,300V滤波电容两端的电压放电会极其缓慢。此时,如果要用万用表的电阻挡测量电源,应先对300V滤波电容两端的电压进行放电,可用一大功率的几百欧电阻进行放电,也可将电烙铁的插头两端代替电阻进行放电,然后才能测量,否则不但会损坏万用表,还会危及维修人员的安全。

    测量开关电源电路的电压,要选好参考电位,因为开关变压器一次侧之前的地为热地,而开关变压器之后的地为冷地,两者不等电位,不能接错,否则测量的电压和电阻不正确。

}

我要回帖

更多关于 集成电路里面怎么加入电阻,电容的 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信