粒子加速器如何观测物体的位置与观测点有关吗内部结构

  随着研究人员在我们的银河系中发现十几个超强大的天然粒子加速器,百年之久的天体之谜离被解决又近了一步。

  这些发现有助于天文学家了解宇宙射线的起源,即带电粒子和原子核以近光速在太空中飞行,其中充满了令人难以置信的能量。

  据美国宇航局称,宇宙射线是在1912年发现的,它几乎从银河系的各个方向到达,尽管科学家们尚未确切确定它们如何达到其超快速度。

  中国南京附近紫金山天文台的天体物理学家刘思明告诉《生命科学》,许多研究人员怀疑宇宙射线在超新星爆炸中死亡时会从大量恒星中甩出。他补充说:“在这样的事件中,恒星在两个月内释放出与他们一生相同的能量。”

  刘说:“但即使像这样的强力爆炸,也只能赋予宇宙射线不到千万亿电子伏特(PeV)或四千万电子伏特的电压。天文台已经捕获了超高能宇宙射线,其能量超过了这一水平,到目前为止,还没有人能够弄清楚它们来自宇宙中的何处。”

  刘说,发现宇宙射线的来源一直很困难,因为作为带电的实体,它们会被银河中丰富的磁场偏转。他补充说,这意味着在地球上捕获的宇宙射线不会直接指向其起点。

  但是,当它们远离源头喷射时,宇宙射线可以与周围的气体相互作用,并以宇宙射线能量的十分之一产生伽马射线。这些射线不带电,因此沿直线传播,为发现它们的来源提供了一种方法。

  刘和他的同事们一起使用了中国的大型高空空气淋浴天文台(LHAASO),它是四川省青藏高原边缘海子山顶上正在建设的设施,用于间接观察伽马射线光。随着伽玛射线撞击地球大气层,它们生成可以在LHAASO的上千台探测器,这将最终蔓延超过0.4平方英里(1平方公里)的区域被捕获粒子簇射,根据一份新闻稿。

  尽管仅在阵列工作的一半时就获得了数据,但它能够揭示整个银河系的十二种来源——被称为PeVatrons,因为它们能够向具有Peta电子伏特的能量注入亚原子粒子。这些实体的力量至少是地球上最大的粒子加速器大强子对撞机的100倍。

  研究小组还探测到了有史以来最强大的伽马射线光子或轻粒子——一个具有1.4 PeV的物体。他们于5月17日在《自然》杂志上报告了他们的发现。

  在PeVatron中有一些很熟悉的天体,例如蟹状星云,它已知含有一颗被称为脉冲星的死星,它可能是宇宙射线加速器的潜在嫌疑人。但清单上还包括天鹅座星座中一个活跃的恒星形成区域,研究人员不得不为正在那里发射出如此强大的粒子而scratch之以鼻。

  刘说:“LHAASO只能将PeVatron辐射源定位在几十或几百个光年内,因此很难确切知道每个区域的哪些物体正在引起加速。”

  尽管如此,“这是迈出的重要一步,”德国马克斯·普朗克物理研究所的天体物理学家Razmik Mirzoyan告诉Live Science。Mirzoyan补充说:“LHAASO很快将比以前的任何此类望远镜大四倍,这将使其开启超高能观测的新时代。”

  Mirzoyan是合作的一部分,该合作正在南半球建立类似的设施,以磨练超高能宇宙射线源。他说:“通过将来自该设施的信息与来自在电磁光谱中观察到的望远镜和观察中微子的望远镜数据相结合,有可能该领域最终将在约10年内知道这些神秘实体的起源。”

  Lui同意,将来用LHASSO和其他仪器进行的观测应该有一天可以帮助查明宇宙射线如何达到如此惊人的速度和能量。他说:“我们希望我们能解决这个问题。” “这些观察结果为回答这个问题提供了可能性。”

}

  基础物理学的发展离不开深入揭示物质的结构,这就需要通过高能粒子加速器来产生新粒子。可以说,粒子加速器从某种程度上制约着基础物理学的发展,人类需要一个更大的粒子加速器。有物理学家提出设想,利用黑洞作为粒子加速器。

  在大型强子对撞机(LHC)于2012年发现粒子物理学中最后一块拼图——希格斯玻色子之后,关于下一步该怎么走的讨论很多。大型强子对撞机是目前世界上最强大的粒子加速器,其对撞粒子的能量约为13万亿电子伏特。

  虽然这产生了一些超越标准模型的物理暗示,但它可能无法解决粒子物理学中一些最大的问题,物理学家需要更强大的粒子加速器。对此,有物理学家提议,建造一个能量为大型强子对撞机十倍的环形对撞机。但是建造和运行新粒子加速器的成本将会非常高昂,这让一些物理学家怀疑它的成本是否值得。

  然而,如果我们可以使用宇宙中已经存在的粒子加速器,情况就不是这样了。科学家已经知道,黑洞是宇宙中最为强大的“引擎”,它们能产生高能粒子喷射流,这些粒子被加速到接近光速的速度离开黑洞。

  不幸的是,黑洞产生的任何奇异高能粒子都会迅速衰变,所以我们无法直接观测到这些可能是标准模型之外的粒子。然而,最近发表在《物理评论D》(Physical Review D)上的一篇文章认为,我们也许能够通过引力波间接地观测到奇异的高能粒子。

  在过去的几年里,天文学家观测到了黑洞和中子星合并产生的引力波。我们可以用足够的灵敏度来观测它们,这样我们就可以确定一些东西,比如合并体的初始质量和角动量,以及由此产生的黑洞质量和角动量。但是我们应该能够更敏感地测量合并过程中发生的其他能量波动,这就是这篇新论文的切入点。

  旋转的黑洞倾向于通过一种被称为“参考系拖拽”的过程向环绕黑洞周围的物质云提供能量。如果一个黑洞周围的一团弥散物质开始与另一黑洞周围的物质合并,两个黑洞之间的参考系拖拽效应就会把大量的能量转移到物质上。这类似于旅行者1号探测器利用木星的引力弹弓效应加速到太阳系逃逸速度,但黑洞的威力要大得多。

  在黑洞周围物质合并过程中,将会产生超辐射,它会制造出一束比我们在地球上所能产生的任何东西都要强大得多的高能粒子流,这可能会产生粒子物理标准模型之外的奇异粒子。虽然我们无法直接观测这些粒子,但是它们的能量会影响黑洞产生的引力波。通过寻找引力波中的波动,反过来我们可以知道奇异粒子的存在,或者至少知道哪些奇异粒子可能不会存在。

  虽然黑洞粒子加速器不会像地球上人类建造的粒子加速器那样精确,但也许通过研究引力波,我们可以了解到存在着超越标准模型的粒子,这就使得建造新的粒子加速器是值得的,这样才能更好地知道物理学的发展方向。

特别声明:以上文章内容仅代表作者本人观点,不代表新浪网观点或立场。如有关于作品内容、版权或其它问题请于作品发表后的30日内与新浪网联系。

}

京东已向全国2661个区县提供自营配送服务,支持货到付款、POS机刷卡和售后上门服务。

互联网出版许可证编号新出网证(京)字150号 | | | 违法和不良信息举报电话:

| 消费者维权热线: |

京东旗下网站: | | 网络内容从业人员违法违规行为举报电话:-3

}

我要回帖

更多关于 物体的位置与观测点有关吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信