连续化连续精馏塔的设计特点秦参数连续化操作与间歇化操作有何异同

化工原理--精馏_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
化工原理--精馏
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩45页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢[1] Editorial Committee of Handbook Chemical Engineering (《化学工程手册》编辑委员会). Handbook Chemical Engineering (化学工程手册) [M]. Beijing: Chemical Industry Press, 1989.
[2] Robinson C S, Gilliland E R. Elements of Fractional Distillation [M]. 4th ed. New York: McGraw-Hill, 1950.
[3] Hasebe S, Abdul-Aziz B B, Hashimoto I, Watanabe T. Optimal design and operation of complex batch distillation column//Proceedings of the IFAC Workshop on Interaction between Process Design and Process Control [C]. London, 2.
[4] Mujtaba I M, Macchietto S. Optimal operation of reactive batch distillation//AIChE Annual Meeting [C]. Miami Beach, USA, 1992.
[5] Mujtaba I M, Macchietto S. Optimal operation of multicomponent batch distillation&a comparative study using conventional and unconventional columns//Rreprints IFAC symposium ADCHEM'95 [C]. Kyoto, Japan, 0.
[6] Chiotti O J, Iribarren O A. Simplified models for binary batch distillation [J]. Computers & Chemical Engineering, 1991, 15 (1): 1-5.
[7] Chiotti O J, Salomone H E, Iribarren O A. Selection of multicomponent batch distillation sequences [J]. Chemical Engineering Communications, 1993, 119 (1): 1-21.
[8] Sorensen E, Skogestad S. Comparison of regular and inverted batch distillation [J]. Chem. Eng. Sci., 1996, 51 (22): .
[9] Xu Songlin, Salomone H E, Iribarren O A. Shortcut procedure for inverted batch distillation column (Ⅰ): Multicomponent ideal system [J]. Chinese Journal of Chemical Engineering, 2001, 9 (1): 28-33.
[10] Xu Songlin, Espinosa J, Salomone H E, Iribarren O A. Operation of a batch stripping distillation column [J]. Chinese Journal of Chemical Engineering, 2001, 9 (2): 141-144.
[11] Zhang Xuemei (张雪梅), Guo Jintang (郭锦棠), Zhang Weijiang (张卫江). Binary stripping batch distillation [J]. Journal of Tianjin University (天津大学学报), 2005, 38 (11): 950-954.
[12] Wang Weiguo (王为国), Wu Yuanxin (吴元欣), Wang Cunwen (王存文), Zhen Zhen (曾真). Algorithm of minimum reflux ratio of batch distillation under constant reflux ration and its energy consumption analysis [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2004, 55 (8): .
[13] Wang Weiguo (王为国), Wang Cunwen (王存文), Wu Yuanxin (吴元欣), Zhen Zhen (曾真). Minimum total vapor capacity of binary regular batch distillation [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2006, 57 (11): .
[14] Wang Weiguo (王为国), Zeng Zhen (曾真), Bi Yafan (毕亚凡). Minimum total vapor capacity of batch distillation of binary mixture under total reflux and top accumulation [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2001, 52 (5): 460-463.
[15] Wang Weiguo (王为国), Zeng Zhen (曾真), Bi Yafan (毕亚凡), Sun Wei (孙炜). Mixing of flowing liquid in top vessel with batch distillation under total reflux [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2002, 53 (8): 857-861.
[16] Wang Weiguo (王为国), Wang Cunwen (王存文), Wu Yuanxin (吴元欣), Zeng Zhen (曾真). Energy consumption of batch distillation of binary mixture under &total reflux& [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2004, 55 (9): .
[17] Wang Weiguo, Wang Cunwen, Zhou Fanglei, Qin Yuanhang, Wu Yuanxin, Zeng Zhen. Energy consumption in binary batch distillation of total reflux and top accumulation [J]. Advanced Material Research, 2012, 396: 699-705.
[18] Wang Weiguo (王为国), Zeng Zhen (曾真), Wang Cunwen (王存文), Wu Yuanxin (吴元欣). Minimum theoretical trays for binary batch distillation under total reflux and top accumulation [J]. Petrochemcal Technology (China) (石油化工), 2011, 40 (11): .
[19] Wang Weiguo (王为国), Zeng Zhen (曾真), Qin Yuanhang (覃远航), Wang Cunwen (王存文), Wu Yuanxin (吴元欣). Energy consumption analysis and minimum reboil ratio of stripping batch distillation under constant reboil ratio [J]. CIESC Journal (化工学报), 2012, 63 (7): .
[20] Wang Weiguo (王为国), Duan Xiaoling (段晓玲), Zeng Zhen (曾真), Wang Cunwen (王存文), Wu Yuanxin (吴元欣). Shortcut method of stripping binary batch distillation of under constant residual fraction composition [J]. Journal of Wuhan Institute of Technology (武汉工程大学学报), 2014, 36 (1): 9-13.
[21] Li Qingyang (李庆杨), Wang Chaoneng (王超能), Yi Dayi (易大义). Numeric Analysis (数值分析) [M]. Wuhan: Huazhong University of Technology Press, 1982.
[22] Xue Yi (薛毅). Optimization Theory and Methods(最优化原理与方法) [M]. Beijing: Beijing University of Technology Press, 2004.
CHEN Meijie, CHENG Gong, TIAN Fenglin, HE Yurong. [J]. CIESC Journal, ): 89-94.
YU Yong, ZHAN Shuanglin, ZHAO Huilei. [J]. CIESC Journal, ): 165-170.
DANG Dong, WANG Kejian. [J]. CIESC Journal, ): 159-164.
Copyright & 2012 CIESC Journal All Rights Reserved
No13 Qingnianhu South Street,Dongcheng District,Beijing 100011,China
Tel:+86-10-/85/86/90 E-mail:.cn
京ICP备号-3上传用户:gexlecprbo资料价格:5财富值&&『』文档下载 :『』&&『』学位专业:&关 键 词 :&&&&权力声明:若本站收录的文献无意侵犯了您的著作版权,请点击。摘要:(摘要内容经过系统自动伪原创处理以避免复制,下载原文正常,内容请直接查看目录。)精馏是化工分别办法中工业化最成熟,处置量最年夜的分别办法。持续精馏处置含低浓度杂质的溶液时,关于指定的产物纯度,增长塔板数将进步主产物的收率,但装备投资也随之进步;下降塔板数,则杂质流股中将带走年夜量的产物招致产物收率下降。间歇精馏处置含低浓度杂质的溶液不存在流股太小或主产物年夜量丧失的成绩,但间歇精馏的只能停止小批量的临盆,处置量远不如持续精馏。针对这类情形,本文提出和研讨了持续精馏的静态积累操作方法。起首提出了持续精馏的静态积累操作计划。该计划存在三个操作步调:1,塔顶连续采出,塔中持续进料,两者流量雷同,至塔顶馏分积累罐中轻组分纯度降至目的浓度停滞。2,坚持其他前提不变,塔釜持液以必定的速度采出,采出时光不宜太长,避免塔顶产物不及格。3,增年夜回流比,使塔顶采出量削减,塔釜持液量增长至初始程度。树立了持续精馏的静态积累数学模子,用MATLAB停止了进程模仿求解和考核了分歧操作参数对操作进程的影响。其次,应用ChemCAD对正己烷-环己烷物系分别的持续精馏的静态积累操作进程第一步操作停止了模仿。模仿成果显示当塔板数为45,回流比为5.8时,持续精馏静态积累操作塔顶轻组分的收率为99.9999%,高于通俗持续精馏的99.9%。静态积累操作的有优势但不显著。当塔板数下降为25时,前者变成99.16%,后者变成96.47%,两者之间的差距变年夜。静态积累持续精馏在包管收率的条件下,操作加倍简略,掌握加倍便利。同时静态积累持续精馏塔釜取得的丙醇纯度也高于通俗持续精馏,是以该操作方法也实用于含低浓度产物混杂物的分别。最初应用乙醇-正丙醇物系和甲醇-水停止了持续精馏的静态积累操作试验。在乙醇-正丙醇试验中,应用乙醇体积分数99%的乙醇-正丙醇溶液为原料,塔釜温度从78.4℃逐步降低到96.4℃,塔釜中正丙醇的质量含量从1.02%降低到92.94%。塔顶温度一直坚持在78.4℃阁下,产物纯度坚持在99.9%以上。试验进程温度、浓度的静态变更和试验成果与模仿成果根本吻合,注解了持续精馏静态操作方法在处置含低浓度杂质物系时具有优势。Abstract:Distillation is one of the most mature and the most important methods in chemical industry, respectively. Continuous distillation disposal of water solution of low concentration impurity, a specific product purity, growth plate number will improve the yield of the main product, however, the equipment investment is also alo the decline in the number of tower plate, the impurities flow shares will take a large amount of product resulted in low yield. Disposal of batch distillation containing low impurity concentration of the solution does not exist stream is too small or loss of production of a large number of achievements, but batch distillation can only stop the small batch production, disposal capacity far worse than continuous distillation. In view of this kind of situation, this paper proposes and studies the static accumulation operation method of continuous distillation. First, the continuous distillation of the static accumulation operation plan is proposed. The plan has three operating steps: 1, continuous mining tower, the tower continues to feed, both flow similar to the top fraction of the accumulation of light components in the tank to the concentration of the target concentration of stagnation. 2, adhere to other conditions unchanged, the tower still holding liquid at a certain rate of mining, mining time should not be too long to avoid the top of the product is not passed. 3, the increase of the reflux ratio, making the top of the tower to reduce the amount of output, the amount of liquid to the initial level of the tower. The mathematical model of static accumulation of continuous distillation was set up, and the effects of different operating parameters on the operation process were solved by MATLAB. Secondly, the application of ChemCAD to the continuous distillation of the normal hexane cyclohexane system is the first step to stop the operation process. The results show that when the number of the tower plate is 45, the reflux ratio is 5.8, the yield of the continuous distillation static accumulation operation tower is 99.9999%, higher than 99.9% of the popular continuous distillation. Static accumulation operation has advantages but not significant. When the number of plates dropped to 25, the former became 99.16%, the latter became 96.47%, and the gap between the two became larger. Static accumulation of continuous distillation under the conditions of guaranteed yield, the operation is more simple, easy to master. At the same time, the purity of the alcohol is higher than that of the ordinary continuous distillation, and the operation method is also applied to the mixture of the low concentration product. At first, the static accumulation operation test of the ethanol - normal alcohol and methanol - water was used. In the ethanol is alcohol test, application of ethanol volume fraction of 99% ethanol - is alcohol solution as raw material, tower reactor temperature from 78.4 DEG C gradually reduced to 96.4 DEG C, tower kettle is alcohol content from 1.02% reduced to 92.94%. The temperature of the top of the tower has been kept at 78.4 degrees, and the purity of the product is more than 99.9%. The static variation of temperature and concentration of the test process and the experimental results are in agreement with the results of the imitation. The continuous distillation static operation method has the advantages of the continuous distillation process in the treatment of low concentration impurity.目录:摘要3-4ABSTRACT4-5第一章 文献综述8-20&&&&1.1 低浓度杂质的处理方式8-11&&&&&&&&1.1.1 超临界流体萃取技术8-9&&&&&&&&1.1.2 膜分离技术9-11&&&&&&&&1.1.3 泡沫吸附分离技术11&&&&1.2 间歇精馏连续化操作方式11-17&&&&&&&&1.2.1 中间储罐间歇精馏操作方式12-14&&&&&&&&1.2.2 多储罐间歇精馏操作方式14-16&&&&&&&&1.2.3 连续式间歇精馏操作方式16-17&&&&1.3 动态累积操作方式17-19&&&&1.4 本文研究内容19-20第二章 连续精馏动态累积操作方式及数学模型模拟20-31&&&&2.1 连续精馏的动态累积操作方式20-21&&&&2.2 连续精馏动态累积操作方式的数学模型21-24&&&&&&&&2.2.1 数学模型的基本假设21&&&&&&&&2.2.2 数学模型的建立21-23&&&&&&&&2.2.3 数学模型的求解23-24&&&&2.3 MATLAB 模拟结果与分析24-30&&&&&&&&2.3.1 MATLAB 模拟结果24-27&&&&&&&&2.3.2 持液量对连续精馏动态累积操作过程的影响27-28&&&&&&&&2.3.3 第二步采出速度对精馏过程的影响28-29&&&&&&&&2.3.4 不同回流比下第三步操作的效果29-30&&&&2.4 本章结论30-31第三章 连续精馏动态累积操作分离正己烷-环己烷的模拟31-40&&&&3.1 物系的选择31&&&&3.2 热力学模型的选择31-32&&&&3.3 连续精馏模拟32-36&&&&3.4 连续精馏动态累积操作的模拟36-38&&&&3.5 本章结论38-40第四章 连续精馏动态累积操作的实验研究40-50&&&&4.1 实验前准备工作40-46&&&&&&&&4.1.1 实验试剂、实验装置和分析手段40-42&&&&&&&&4.1.2 色谱校正42&&&&&&&&4.1.3 精馏塔流体力学性能及理论板数的测定42-45&&&&&&&&4.1.4 理论塔板数的测定45-46&&&&4.2 连续精馏动态累积操作分离乙醇-正丙醇实验46-48&&&&4.3 连续精馏动态累积操作分离甲醇-水48-49&&&&4.4 本章小结49-50第五章 结论50-51参考文献51-56附录56-63发表论文和参加科研情况说明63-64致谢64分享到:相关文献|您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
《化工基础》作业.doc10页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
文档加载中...广告还剩秒
需要金币:350 &&
《化工基础》作业
你可能关注的文档:
··········
《化工基础》作业
1.化工产品种类繁多,生产工艺流程千差万别,具体内容是动量传递、质量传递、热量传递和 ,但其基础理论可概括为 和三传一反。
2.在相同条件下,逆流传热比并流传热的推动力 ,完成相同传热任务所需的传热面积比并流传热 。
3.空气和水分别在同种规格的管内作稳定流动,若它们的质量流量不变,当温度升高时,空气的雷诺数将 ,水的雷诺数将 。
4.精馏是以液体混合物中各组分的 不同,实现液体混合物分离的方法,精馏塔一般分为 和精馏段。
5.对多釜串联反应器,每一级都是全混流反应器,各釜之间物料无 ,串联级数越多,各级间的 越小,其性能越接近平推流反应器。
6.在合成氨生产中,用燃料高温转化法制原料气的方法有 , 和重质烃部分氧化法等。
7.工程上考察流体的运动规律时,着眼点是流体的 运动;流体流经管路系统时的阻力因其不同的外部条件可分为 阻力和局部阻力。
8.流体在圆管内作层流流动时,流体主体质点彼此平行地沿着 方向作直线运动,此时层流的平均流速是管内最大流速的 倍。
9.合成氨工业采用的烃类蒸汽转化法造气工艺,是在催化剂的作用下,将 与蒸气发生反应, 生成 和碳的氧化物。
10.吸收是分离 混合物的操作,吸收的依据是利用混合物组分在液相中 的差异而分离的。
11.在气体的流量、气体进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将 ,操作线 平衡线。
12.流体在圆形管内作湍流流动时,在靠近管壁出存在 ,当雷诺数增大时,该层的厚度变 。
13.吸收三氧化硫所用的硫酸除了控制其浓度外,还必须控制温度。温度过低,会使 增大,降低 。
14.将二氧化硫转化为三
正在加载中,请稍后...连续精馏和间歇精馏有何不同,如果用图解法确定连续精馏塔的理论塔板数,应先取得哪些数据
极度回忆97612
连续精馏塔一般从中间进料,有效塔板在上方,同时分离沸点不同的物质,要看的数据大致有:分离物的沸点,沸程,蒸发面积,蒸发量,真空度,(真空精馏),进料温度,冷凝器等等.确定塔高和塔板数!间歇精馏相对简单.
为您推荐:
其他类似问题
扫描下载二维码}

我要回帖

更多关于 间歇式一体化连续流 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信