赛车pk10手机开奖记录pk10шшш.1398sc .сом——h-di是什

Glass transition cooperativity from broad band heat capacity spectroscopy | SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
Glass transition cooperativity from broad band heat capacity spectroscopyYeong Zen ChuaGunnar SchulzEvgeni ShoifetHeiko HuthReiner ZornJürn W. P. ScmelzerChristoph SchickOriginal Contribution
Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed.Glass transition Calorimetry Temperature modulation (AC) PS PMMA Dielectric spectroscopy This is a preview of subscription content,
to check accessWe acknowledge F. Kremer, Leipzig, E. Donth, Dresden and A. Sch?nhals, Berlin for stimulating discussions and financial support from the German Science Foundation (DFG) and the European Union.1.Donth E (2001) Glass transition. Thermal glass transition. Glass temperature. Partial freezing. Springer, Berlin2.Hensel A, Schick C (1998) Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. J Non Cryst Solids 235–237:510–5163.Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials [Review]. J Non Cryst Solids 169(3):211–2664.Schmelzer JWP (2012) Kinetic criteria of glass formation and the pressure dependence of the glass transition temperature. J Chem Phys 136(7):0745125.Huth H, Wang LM, Schick C, Richert R (2007) Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol. J Chem Phys 126(10):1045036.Brás AR, Dionísio M, Huth H, Schick C, Sch?nhals A (2007) Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopy. Phys Rev E 75:0617087.Schick C, Sukhorukov D, Sch?nhals A (2001) Comparison of the molecular dynamics of a liquid crystalline side group polymer revealed from temperature modulated DSC and dielectric experiments in the glass transition region. Macromol Chem Phys 202(8):8.Gutzow IS, Schmelzer JWP (2013) The vitreous state thermodynamics, structure, rheology, and crystallization, 2nd edn. Springer, Heidelberg9.Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100(31):110.Kremer F, Sch?nhals A (2002) Broadband dielectric spectroscopy. Springer, Heidelberg11.Vogel H (1921) Das Temperaturabh?ngigkeitsgesetz der Viskosit?t. Phys Z 22:645–64612.Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–35513.Tammann G, Hesse G (1926) Die Abh?ngigkeit der Viscosit?t von der Temperatur bei unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156:245–25714.Hensel A, Dobbertin J, Schawe JEK, Boller A, Schick C (1996) Temperature modulated calorimetry and dielectric spectroscopy in the glass transition region of polymers. J Therm Anal 46(3–4):935–95415.Donth E (1993) Relaxation and thermodynamics in polymers, glass transition. Akademie Verlag, Berlin16.Donth E (1982) The size of cooperatively rearranging regions at the glass transition. J Non Cryst Solids 53(3):325–33017.Schawe JEK (1996) Investigations of the glass transitions of organic and inorganic substances—DSC and temperature-modulated DSC. J Therm Anal 47(2):475–48418.Donth E, Korus J, Hempel E, Beiner M (1997) Comparison of DSC heating rate and HCS frequency at the glass transition. Thermochim Acta 305:239–24919.Schmelzer JWP, Tropin TV (2013) Dependence of the width of the glass transition interval on cooling and heating rates. J Chem Phys 138:034507. doi:
20.Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instr 78(7):391021.Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44:22.Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Top 141(1):153–16023.Zhou D, Huth H, Gao Y, Xue G, Schick C (2008) Calorimetric glass transition of Poly(2,6-dimethyl-1,5-phenylene oxide) thin films. Macromolecules 41:24.Shoifet E, Chua YZ, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instr 84(7):3912. doi:
25.Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139–14626.Huth H, Beiner M, Weyer S, Merzlyakov M, Schick C, Donth E (2001) Glass transition cooperativity from heat capacity spectroscopy—temperature dependence and experimental uncertainties. Thermochim Acta 377(1–2):113–12427.Huth H, Beiner M, Donth E (2000) Temperature dependence of glass-transition cooperativity from heat-capacity spectroscopy: Two post-Adam-Gibbs variants. Phys Rev B 61(22):128.Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000) Characteristic length of dynamic glass transition near T-g for a wide assortment of glass-forming substances. J Phys Chem B 104(11):. doi:
29.Saiter A, Delbreilh L, Couderc H, Arabeche K, Sch?nhals A, Saiter JM (2010) Temperature dependence of the characteristic length scale for glassy dynamics: Combination of dielectric and specific heat spectroscopy. Phys Rev E 81(4):04180530.Hamonic F, Prevosto D, Dargent E, Saiter A (2014) Contribution of chain alignment and crystallization in the evolution of cooperativity in drawn polymers. Polymer (0). doi:
31.Saiter A, Prevosto D, Passaglia E, Couderc H, Delbreilh L, Saiter JM (2013) Cooperativity length scale in nanocomposites: Interfacial and confinement effects. Phys Rev E 88(4):04260532.Stickel F, Fischer EW, Richert R (1995) Dynamics of glass-forming liquids. I. Temperature-derivative analysis of dielectric relaxation data. J Chem Phys 102(15):33.Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29:24034.Moynihan CT, Easteal AJ, De Bolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. Am Ceram Soc 59:12–1635.Schick C, Lexa D, Leibowitz L (2012) Differential scanning calorimetry and differential thermal analysis. In: Kaufmann EN (ed) Characterization of materials, vol. 1. John Wiley & Sons, New York, pp 483–495. doi:
36.Gao S, Koh YP, Simon SL (2013) Calorimetric glass transition of single polystyrene ultrathin films. Macromolecules 46:562–570. doi:
37.Sarge SM, Hemminger W, Gmelin E, Hohne GWH, Cammenga HK, Eysel W (1997) Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal 49:38.Kraftmakher Y (2002) Modulation calorimetry and related techniques. Phys Rep 356:1–11739.Birge NO (1986) Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. Phys Rev B 34(3):40.Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54(25):41.Christensen T (1985) The frequency dependence of the specific heat at the glass transition. J Phys (Paris) 46(12):C8-635–C638-63742.Jeong YH (1997) Progress in experimental techniques for dynamic calorimetry. Thermochim Acta 305:67–9843.Merzlyakov M, Schick C (2001) Step response analysis in DSC—a fast way to generate heat capacity spectra. Thermochim Acta 380(1):5–1244.Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377(1–2):193–20445.Hohne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal Part 1: Basic considerations. Thermochim Acta 391(1–2):51–6746.Merzlyakov M, Hohne GWH, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal Part 2: Calibration practice. Thermochim Acta 391(1–2):69–80. doi:
47.Sullivan P, Seidel G (1966) An ac temperature technique for measuring heat capacities. Ann Acad Sci Fenn A VI 210:58–6248.Kraftmakher Y (2004) Modulation calorimetry, vol XII. Theory and applications. Springer, Berlin49.Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403(1):55–6350.Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505(1–2):1–13. doi:
51.Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432(2):177–18552.Christensen T, Olsen NB, Dyre JC (2008) Can the frequency dependent isobaric specific heat be measured by thermal effusion methods? In: AIP Conference Proceedings. pp 139–14153.Jakobsen B, Olsen NB, Christensen T (2010) Frequency-dependent specific heat from thermal effusion in spherical geometry. Phys Rev E 81(6):06150554.Christensen T, Olsen NB, Dyre JC (2007) Conventional methods fail to measure c[sub p](omega) of glass-forming liquids. Phys Rev E Stat Nonlinear Soft Matter Phys 75(4):151155.Glorieux C, Nelson KA, Hinze G, Fayer MD (2002) Thermal, structural, and orientational relaxation of supercooled salol studied by polarization-dependent impulsive stimulated scattering. J Chem Phys 116(8):56.Bentefour EH, Glorieux C, Chirtoc M, Thoen J (2003) Broadband photopyroelectric thermal spectroscopy of a supercooled liquid near the glass transition. J Appl Phys 93(12):57.van Herwaarden AW (2005) Overview of calorimeter chips for various applications. Thermochim Acta 432(2):192–20158.Merzlyakov M (2003) Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochim Acta 403(1):65–8159.Ahrenberg M, Shoifet E, Whitaker KR, Huth H, Ediger MD, Schick C (2012) Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films. Rev Sci Instr 83(3):391260.Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–20761.Svanidze AV, Huth H, Lushnikov SG, Schick C (2012) Study of phase transition in tetragonal lysozyme crystals by AC-nanocalorimetry. Thermochim Acta 544:33–37. doi:
62.Svanidze AV, Huth H, Lushnikov SG, Seiji K, Schick C (2009) Phase transition in tetragonal hen egg-white lysozyme crystals. Appl Phys Lett 95(26):26370263.Ahrenberg M, Chua YZ, Whitaker KR, Huth H, Ediger MD, Schick C (2013) In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. J Chem Phys 138(2):4511. doi:
64.Weyer S, Hensel A, Schick C (1997) Phase angle correction for TMDSC in the glass-transition region. Thermochim Acta 305:267–275. doi:
65.Minakov AA, Schick C Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta. doi:
66.Minakov AA, Roy SB, Bugoslavsky YV, Cohen LF (2005) Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields. Rev Sci Instrum 76:04390667.Weyer S, Hensel A, Korus J, Donth E, Schick C (1997) Broad band heat capacity spectroscopy in the glass-transition region of polystyrene. Thermochim Acta 305:251–25568.Hempel E, Beiner M, Renner T, Donth E (1996) Linearity of heat capacity step near the onset of alpha glass transition in poly(n-alkylmethacrylate)s. Acta Polym 47(11–12):525–52969.Hao N, Bohning M, Schonhals A (2007) Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl-silsesquioxanes. Macromolecules 40:70.Beiner M, Garwe F, Schroter K, Donth E (1994) Dynamic shear modulus in the splitting region of poly(alkyl methacrylates). Colloid Polym Sci 272(11):71.Bergman R, Alvarez F, Alegria A, Colmenero J (1998) The merging of the dielectric alpha- and beta-relaxations in poly-(methyl methacrylate). J Chem Phys 109(17):72.Soreto Teixeira S, Dias CJ, Dionisio M, Costa LC (2013) New method to analyze dielectric relaxation processes: a study on polymethacrylate series. Polym Int. doi:
73.Garwe F, Schonhals A, Lockwenz H, Beiner M, Schroter K, Donth E (1996) Influence of cooperative dynamics on local relaxation during the development of the dynamic glass transition in poly(n-alkyl methacrylate)s. Macromolecules 29(1):247–25374.Schr?ter K, Unger R, Reissig S, Garwe F, Kahle S, Beiner M, Donth E (1998) Dielectric spectroscopy in the r? splitting region of glass transition in poly(ethyl methacrylate) and poly(n-butyl methacrylate): Different evaluation methods and experimental conditions. Macromolecules 31:75.Beiner M, Kahle S, Hempel E, Schroter K, Donth E (1998) Two calorimetrically distinct parts of the dynamic glass transition. Europhys Lett 44(3):321–32776.Havriliak S, Negami S (1966) A complex plane analysis of alpha-dispersions in some polymer systems. J Polym Sci Part C 14:99–11777.Donth E (2003) Can dynamic neutron scattering help to understand a thermodynamic variant of an internal quantum-mechanical experiment in the angstrom range? Eur Phys J E Soft Matter Biol Phys 12(1):11–18. doi:
78.Colmenero J, Arbe A, Alegria A (1994) The dynamics of the alpha- and beta-relaxations in glass-forming polymers studied by quasielastic neutron scattering and dielectric spectroscopy. J Non Cryst Solids 172(1):126–137Yeong Zen Chua1Gunnar Schulz1Evgeni Shoifet1Heiko Huth1Reiner Zorn2Jürn W. P. Scmelzer1Christoph Schick11.Institute of PhysicsUniversity of RostockRostockGermany2.Juelich Centre for Neutron ScienceJuelichGermany
We use cookies to improve your experience with our site.}

我要回帖

更多关于 手机北京pk10pk500w 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信