目前的智能小米ai音箱 语音识别有语音交互方面的方案设计吗?

智能音箱方案_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
内容提供机构
更多优质内容和服务
智能音箱方案
0|0|文档简介|
深圳市优软众创技术有限公司主要从事电子产...|
总评分0.0|
在家电产品刚刚实现物联网的时候,只要提到智能家居的概念一定与手机脱不了干系。
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
还剩3页未读,点击继续
深圳市优软众创技术有限公司
文库认证机构官网
深圳市优软众创技术有限公司主要从事电子产品、物联网相关的软硬件的开发、销售及技术咨询服务;企业管理咨询、投资咨询服务;多媒体广告;程控交换机、传输设备...拆解阿里/亚马逊/谷歌的智能音箱,发现了四个问题 - EDN电子技术设计
随着智能音箱的火热以及语音交互的盛行,麦克风阵列技术开始走向前台,“XX产品用的是谁家的麦克风阵列”也成为行业中热议的话题;这时我们很有必要看清“麦克风阵列”产品技术的过去现在和产业链现状。
如果没有“它”,所有的人工智能设备都是“聋子”,所有的智能音箱都是智障音箱;如果没有它,背后的人工智能技术牛X到天都没用!它是智能设备的“耳朵”——麦克风阵列。
“Alexa”,当你对着亚马逊Echo呼唤时,它用顶部的蓝色光环应声相应,“今天天气怎么样”,它就会“听懂”你的意图,用柔和的声音告诉你天气状况。
(从左到右依次为叮咚音箱A1、亚马逊Echo、Google Home、天猫精灵A1)
而“听懂”或者“听清”的第一步在于准确的获取用户的声音(即拾音),否则无论云端的虚拟助手多么智能,也是无头苍蝇。麦克风阵列是语音交互的第一步,在智能音箱落地中有关键作用,不仅传统的芯片公司,语音技术巨头和有深厚技术背景的初创公司纷纷加入这一领域。
同时,随着智能音箱的火热以及语音交互的盛行,麦克风阵列技术开始走向前台,“XX产品用的是谁家的麦克风阵列”也成为行业中热议的话题;这时我们很有必要看清“麦克风阵列”产品技术的过去现在和产业链现状。
那么我们经常提及的麦克风阵列究竟是什么?它有哪些类别及作用?哪些玩家参与其中?市场上各家智能音箱使用的麦克风阵列又有什么不同?
一、麦克风阵列:拾音
简单来讲,麦克风阵列是由2个及以上麦克风按一定规则排列组成,在特定空间对声音进行获取和处理的录音系统,它是远讲语音(超过1米以上)设备的一个关键部分。(注:本文所讨论的为远讲语音设备中的消费级麦克风阵列)
(图为四款智能音箱的麦克风阵列)
麦克风阵列的功能就是拾音。在远讲语音设备中,麦克风阵列通过声源定位、波束形成、噪声抑制、回声消除等远讲算法,有效拾取声音,从而保证具体场景中语音的识别率。
具体来讲,以智能音箱为例,在家庭场景中会存在各种噪声等,麦克风阵列的作用就是“众里寻他千百度”,在众多干扰噪声中寻找到你,但只是找到还不够,还需要抑制噪声、消除自身发出声音的影响,并增强你的声音,从而确保在云端进行有效识别,并满足你的任务指令。
而拾音又分为远场拾音(1米外)和近场拾音(20cm内)。比如,以Siri为代表的智能手机就是近场拾音,采用的是单麦克风,可在近距离、低噪声的情况下拾取符合语音识别需求的声音。但是一旦将智能手机放在有噪声的较远的距离,Siri的识别率就会直线下降,单麦克风的局限就凸显了出来。
而这正是远场拾音和近场拾音的区别,也凸显了麦克风阵列的重要性。不仅如此,由于噪声、混响等因素的存在,远场拾音还要与远讲语音识别算法相匹配,才能真正做到“听清”。
二、麦克风阵列中的关键技术
在远场拾音中, 麦克风阵列可以提供前端信号处理,拾取有效的语音信号输送到云端进行识别。这其中就几项关键的技术:声源定位、波束形成、噪声抑制、回声消除、语音增强。
1、声源定位
声源定位的任务就是在具体场景中,甚至从噪音中找到发出声音的“你”,以便后续的波束形成。它是基于麦克风阵列对目标信号(声源)的位置探测,确定在特定空间中说话者的位置关系。尤其是在移动场景中,实时的声源定位就显得重要。
2、波束形成
波束形成是对麦克风阵列中各个麦克风输出的声音进行信号处理,从而形成空间指向性。这种方法会抑制目标声音以外的声音干扰,不仅抑制噪声也包括其他方向的人声。
以叮咚音箱的AIUI模式为例,开启了一定时间的多伦对话后,它会优先默认第一个说话者作为它拾音的主方向,从而抑制其他方向的声音,来保证和一个对话者的交互。这也意味着,当前技术下,智能音箱不可能同时和多人进行交互。
3、噪声抑制
你在卧室中开着电视,是很难唤醒在你床上睡觉的iPhone中的Siri的,这就是它不具备噪声抑制的能力。但你可以唤醒理你较远的智能音箱,这正是噪声抑制的作用。
简单来讲,噪声抑制就是在目标信号和干扰噪声中,保留目标声音,削弱周围的噪声,从而保证获取的目标声音信号相对清晰,再结合云端相匹配的语音识别算法,实现有效识别理解。
混响就是声源发出后,在空间中经过多次物体(墙壁)的反射和吸收,若干声波混合在一起所形成的现象,它会影响语音信号的处理,声源定位的精度以及语音识别效果。通过远讲算法消除混响是远讲语音设备在拾音环节的关键一环。
5、回声抵消
回声抵消简单来讲,就是不让语音设备自己发出的声音干扰到拾音过程。比如在智能音箱播放音乐时,你唤醒设备并下达命令,这时麦克风阵列同时采集你发出的声音和正在播放的音乐的声音,而回声抵消就是要去掉其中音乐的声音并保留人的声音,以供云端进行语音识别。
6、语音增强
在家居环境中,存在着背景噪音、回声、混响等噪音干扰,这些噪音相互叠加严重影响语音识别效果。除了降低各种噪声外,还可以从语音增强进行改善。
远距离拾音的另一个问题就是获取的语音信号较弱,需要通过麦克风阵列进行噪声分离,提取目标信号,并增强语音信号的能量,从而提升语音识别效果。
三、消费级麦克风阵列的里程碑事件
早在20世纪七八十年代,麦克风阵列已经被应用到语音信号处理中,进入90年代以来,基于麦克风阵列的语音信号处理算法逐渐成为一个新的研究热点。近年来随着语音交互成为趋势,麦克风阵列逐渐进入消费市场领域,日趋火热。
在麦克风阵列领域拥有丰富经验的先声互联创始人付强曾谈到,麦克风阵列在消费级领域出现有几个里程碑事件:
第一个里程碑事件是微软在2010年6月份正式推出的Kinect,它是Xbox 360游戏主机的体感周边设备,内置了红外线摄像头、传感器、麦克风阵列,可通过对用户身体动作的变化和发出指令来操作游戏。Kinect曾累计销量2900万部,但近几年逐渐推出了人们的视野。
(图为微软的Kinect)
第二个是三星在2012年推出的全球首款具有远讲语音能力的智能电视,该电视使用麦克风阵列,科胜讯的语音芯片,支持语音操控,并带动了国内的智能电视潮。
第三个里程碑事件就是亚马逊Echo智能音箱在2014年底的推出,其采用6+1麦克风阵列,支持5米远讲语音操控。Echo不但是第一款真正意义上的智能音箱设备,还是消费级麦克风阵列应用的里程碑事件,并带火了当下国内这波智能音箱浪潮。
(图为亚马逊智能音箱Echo)
其中,三星的第一款智能电视和亚马逊的Echo智能音箱都用了4年时间去打磨,才有了今天的技术成熟。而反观国内的智能音箱浪潮,我们还缺少这种对技术的长线投入和对产品的耐心打磨。
四、麦克风阵列的代表性玩家
随着国内智能音箱以及语音交互的火热,在麦克风阵列以及远讲算法领域诞生了一波方案提供商,其中能够提供麦克风阵列的硬件方案,又能够提供前端算法的厂商并不太多,本文选出了具有代表性的几家方案厂商。
1、科大讯飞——国内语音龙头
科大讯飞是国内一家老牌智能语音公司,其有一个专门的团队在研究麦克风阵列技术。目前在讯飞开放平台上,提供二麦线性阵列、四麦线性阵列和六麦环形阵列。中兴、海康威视、美的、高德、优必选、狗尾草等都是其客户。
叮咚音箱就是由京东和科大讯飞联合成立的灵隆科技推出的,其中科大讯飞提供语音语义等技术支持。叮咚音箱A1是国内第一款真正意义上的智能音箱,于2015年8月正式推出,它采用7+1麦克风阵列,豪恩声学提供的ECM麦克风,并采用科胜讯CX20810-11Z音频芯片。在结构上不同于其他智能音箱置于顶部,而是位于主控电路板下面,并采用中空结构,麦克风向外侧倾斜拾音,颇具创意。
(叮咚音箱A1的7+1环形麦克风阵列,黑色为麦克风)
2、科胜讯——国际语音方案巨头
科胜讯成立于1999年,曾是全球最大的独立通讯芯片提供商,后来几经波折被新思科技收购。在语音交互领域,它主要提供语音芯片和麦克风阵列技术,其方案最大优势在于降噪和语音增强算法,技术打磨也更加成熟。难怪科胜讯总裁Saleel Awsare会说,其双麦克风就可以实现友商5-8麦克风的解决方案的效果。
亚马逊、百度、阿里巴巴、腾讯、哈曼、科大讯飞、出门问问、云知声等都是其客户或合作伙伴。据了解科胜讯为Alexa Voice Service (AVS) 量身定做了AudioSmart 语音处理开发套件出货量已超过3000万套,涵盖智能音箱、智能家居、智能电视、机器人等多个品类。出门问问刚刚发布的智能音箱也采用科胜讯的方案,此外,苹果HomePod也可能采用了科胜讯AudioSmart开发套件。
3、先声互联——阵列研究先行者
先声互联是一家成立于2016年的创业公司,主要提供麦克风阵列以及前端信号处理技术。其创始人付强曾在中科院声学所有10余年的声学研究,在语音信号处理领域有20余年的积淀。先声互联目前主要提供两麦、四麦、六麦等解决方案,在抗混响、回声消除、语音增强等方面表现不俗。
先声互联是百度的合作伙伴,其多麦克风硬件开发套件也应用在百度DuerOS平台中。目前,物灵的luka阅读养成机器人、极米科技的Lightank W100、数字家圆的亲见H2等产品都采用了先声互联的远讲算法以及麦克风拾音模组。此外,先声互联也正在和腾讯、联想、小米等公司就某些智能硬件产品展开合作。
4、思必驰——成熟方案输出商
思必驰成立于2007年,是一家面向B端客户的语音语义技术提供商。其副总裁雷国雄告诉笔者,思必驰从2012年就开始研究麦克风阵列技术,并配备一个专门的团队研究语音信号处理,结合思必驰的语音进行优化。目前思必驰提供单麦、两麦、四麦、六麦等解决方案,经过5、6年时间的积累,在性能和稳定性上均表现不错。
近期阿里推出的天猫精灵X1就是采用思必驰的环形6麦克风阵列,模拟麦克风则来自敏芯微电子,天猫精灵在降噪、回声消除等拾音方面均有不错表现。此外,联想、小米、美的、360、DOSS等都是其客户。
5、声智科技——新起之秀
声智科技也成立于2016年,提供麦克风阵列以及远讲算法,目前其推出了单麦、两麦、四麦、六麦、八麦的阵列解决方案,也有不错的表现。有趣的是其创始人陈孝良也来自中科院声学所。
近期刚刚发布的小米AI音箱,就采用了声智科技的环形6麦克风阵列和唤醒技术方案。声智科技也是百度的合作伙伴,推出了基于DuerOS的语音解决方案。此外,腾讯、阿里巴巴、奇虎360、华为、海尔等都是其客户。
五、麦克风阵列:两路分化
目前智能音箱中的麦克风阵列呈现两路分化,主要包括环形和线性。亚马逊Echo、叮咚音箱、天猫精灵、小米AI音箱等技术路线相似,都使用6(+1)、7(+1)个麦克风的环形阵列,而Google Home、出门问问的问问音箱则采用了2麦克风的线性阵列。
(亚马逊Echo的6+1环形麦克风阵列,金色为麦克风)
为何各家使用的麦克风数目不一,真的是数目越多越好吗?先声互联付强曾从技术的角度谈到,事实并非如此。目前麦克风阵列语音增强大致可分为两种技术路线:
一种是以亚马逊Echo为代表的经典波束形成路线,它对麦克风的数目以及阵列拓扑结构(排列位置)依赖较大,通过使用较多的麦克风以及特定结构,从而使得波束的空间区分性更强,保证声源定位和拾音效果。
另外一种就是以科胜讯为代表的路线,该路线更加依赖语音增强算法,而对麦克风阵列数量和阵列拓扑结构依赖较小,通过通过自适应降噪、降低混响、语音分离等技术,从而靠少量麦克风获得良好的拾音效果。
有趣的是,刚刚在8月24日发布的出门问问的智能音箱采用的就是科胜讯的2麦克风阵列,从其测试结果来看,远场拾音唤醒能力并不输于竞品。
(黄色方框为Google Home 2麦线性阵列)
关于阵列麦克风数目的选择,思必驰副总裁雷雄国则从产品层面谈到:首先从性能上考虑,思必驰从单麦、6麦、8麦、12麦都有尝试,思必驰最终选择6麦作为主要的阵列方案,是成本和性能的一个综合考虑。6麦以上尽管性能也会提升,但提升的效果和成本不成正比,但6麦一下数目的减少,成本会降低,性能也会相对降低。
其次,产品形态会影响阵列的选择,比如电视上的Soundbar等设备是长条形,就适合线性阵列;而Echo、叮咚是椭圆,它就可以选择环形阵列。
此外,麦克风数目的选择还和产品定位有关。定位高端产品,对体验有更高要求,则可以选择6麦阵列,而中低端的产品可选择2麦或4麦。
六、麦克风阵列在远场交互中存在的问题
尽管智能音箱经过一段时间的打磨,在拾音、唤醒、识别方面都能够欧达到一个不错的效果,但在远场交互中麦克风阵列仍存在一些亟待解决的问题。
第一,误唤醒是一个问题。雷雄国也谈到,表面看这个是唤醒的问题,但实际跟阵列有较强的关系,唤醒拿到的是阵列拾音的信号,阵列对信号噪声处理效果的好坏直接影响到误唤醒。这个问题也可以从产品的思路进行解决,如唤醒之后只是亮灯而不“说话”,这样会好很多。
第二,声源定位需要提升。在声学环境中,尤其是在反射较强、回声较强、噪音环境下,声源定位需要较大的提升空间。
第三,动态环境中对用户位置的跟踪也需要提升。在家庭场景中, 人会处于一种移动的状态,唤醒和指令可能不在同一个方位,在下一次人机交互中会重点处理刚刚那个方向的信号,如果房间存在多个音源,就可能无法执行指令。
第四,麦克风阵列无法同时进行多人声的识别和处理,当下的波束形成和噪声抑制,会使阵列在同一时间处理同一个方向的声源,从而抑制其他声源,这就意味着当下的技术路线下,机器无法同时与多人进行交互。
结语:麦克风阵列赋予智能硬件“耳朵”
提起未来,我们会幻想无处不在的智能,虚拟助手帮助我们做任何想做的事情。而机器具备智能的第一步应该是听懂人类的心声,那么它首先应该具备的就是一双“耳朵”。
而在人工智能的当下,麦克风阵列的作用就是赋予智能硬件以“耳朵”,让它更好的听到人类的声音,然后将声音传输到云端的智能“大脑”去理解,去调动自身的“技能”,满足人类的需求。
但这双“耳朵”在各种场景中是否灵敏好用,能否“耳听八方”,还需要底层声学技术的进一步研究。
(来源:智东西)如何评价小米 AI 智能音箱「小爱同学」? - 知乎<strong class="NumberBoard-itemValue" title="被浏览<strong class="NumberBoard-itemValue" title=",555,408分享邀请回答2411 条评论分享收藏感谢收起拒绝访问 | www.znjj.tv | 百度云加速
请打开cookies.
此网站 (www.znjj.tv) 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(40fb5ae8c3a94cb4-ua98).
重新安装浏览器,或使用别的浏览器智能音箱专业级评测:语音交互/声音性能/拆机分解三方面深度解析智能音箱专业级评测:语音交互/声音性能/拆机分解三方面深度解析科技犬百家号日,中国电子科技集团公司第三研究所(简称“中电三所”)联合中国电子学会消费者电子分会联合发布了,以“娱心悦耳,音智双全”为主题的智能音箱评测发布会。会上发布了目前市场关注度较为集中的五款智能音箱的评测方法与结果。此次评测以中电三所下属国家广播电视产品质量监督检验中心、北京中电慧声科技有限公司、三所科技创新中心语音与智能声学实验室为技术支持,针对智能音箱交互性水平、声性能、拆机分析三大方面展开了深度评测。智能音箱须具备扩声、语音交互、信息传输以及智能化附加功能。本次评测选择了叮咚、小米、若琪月石、问问音箱、天猫精灵等五款主流智能音箱,中电三所作为国内权威电声科研机构,组织行业专家设计评价方案、依托专业的实验设备和自身丰富的行业经验,创新评测方法,从交互性、声性能、拆机分析三维度对样品进行了评测。在交互性能客观测试方面,通过主客观两个角度,分别从识别准确率、响应时间、唤醒率,以及交互体验、对话判断、执行响应、学习深度、主观感受八项评测项目对智能音箱交互性水平做出准确评价。更创建了自有语料库,兼顾关键词命令操控和网络智能检索,根据发音人性别、年龄、地域构成不同,录制了35位发生者音频,经过后期制作完成2100余条语料库命令,最终筛选出1000余条语音命令作为客观测试信号源,使评测结果更客观更科学更具参考价值。智能交互性能客观分别在三种状态下进行,一种是不加任何干扰、噪声;二是只加干扰、不加噪声;三是只加噪声、不加干扰。如下是三种状态下五款智能音箱的识别准确率测试结果。可以看到在干扰的状态下,对音箱的语音识别率准确性影响是很大的,导致它识别率下降、变差。在测试结果中,分别给出了平均值和中位值。由于测试样本声音差异较大,导致测试结果较为离散且有极端值,甚至0%和100%的识别率出现,极端值比较大,所以用平均值代表整体趋势。离散和极端值的出现,从也反映出本次评测样本选择比较合理,没有全部选择标准普通话样本。响应时间测试使用语料库中标准普通话语音命令,测试结果选取了响应时间的最大值而非选平均值,因为考虑到响应时间越长用户使用体验越差。从测试结果上看,在网络流畅的状态下,不同的测试环境对响应时间的影响并不明显,这与各个音箱介入软件的平台完全语音语义理解部分功能有关。唤醒率与智能音箱硬件麦克风阵列、软件算法关系密切。在2.5米处净信道、干扰状态、噪声状态下唤醒率均为100%,4米处唤醒率下降。通过拉距测试得知,距离影响唤醒的成功率,并且在唤醒之后的语音识别率更低。例如:用户说“天猫精灵”,它回答,用户再问它问题,它可能就无法正确回答。鉴于目前的情况下,我们要真的实现“动口不动手”,还是要离音箱更近一点,声音再大一点。交互性主观评价采用单刺激连续质量评价方法(SSCQE方法), 评价交互体验、主观感受、对话判断、学习深度、执行响应等五项评价指标,五项加权后标准偏差为S,经测试五款音箱标准偏差分别为:S叮咚=0.79, S问问=0.45, S若琪=0.34,S天猫=0.36, S小爱=0.57。智能交互性能评测结论显示,多声源干扰对于智能音箱语音识别能力影响很大,如何甄别确实需要科学算法解决,且掩蔽效应如何合理设计优化算法,是智能音箱R&D正在努力的方向。当前各智能音箱支持的智能搜索类语音命令库范围还需要极大升级,很多命令都是回复,“不知道”或者“目前无此功能”。这直接导致用户的厌烦情绪,间接影响了智能音箱发展前景。智能音箱的联网优化需要进一步提高。声性能测试方面,一个完美的音箱,应该在各个频段都具备饱满、平坦的特点,有些更注重饱满,有些更注重平坦。依据GB/T 1《声系统设备 第5部分:扬声器主要性能测试方法》标准,在尖劈全消音室对音箱进行客观频响测试、失真测试、最大声压级测试。以上是五款音箱的响应曲线与失真曲线。小米音箱人耳可闻的失真,最大声压级是70dB,可以保证播放语音类信号的时候声音洪亮,高频的时候有明显下降,会造成小米音箱播放中高频如琵琶,会声音发闷,不具备声音明亮感;若琪音箱有效频段可以有效覆盖中高频段,但低频失真过大;叮咚智能音箱采用四个全频单元,失真在较小范围内,在辅助单元的帮助下最大声压级可以达到76dB,无法完美展示含有中高频段的音乐;问问保证了有效覆盖中高频,失真控制在较小范围内,较高频段存在较大失真,造成听取较高频段的声音时候出现刺耳音;天猫从中频段开始有下降,全频段都有较大失真,最大声压级只有66dB,这款音箱在工艺设计上对音质有较大的损失。通过以上数据统计,五款音箱有效频带都在100Hz以下,均可完美地表现语音交互效果,但市面上的智能音箱音质还与传统音箱有较大的差距。依据GB/T 1《声系统设备 第13部分:扬声器听音试验》、GB/T 15000 《标准样品工作导则》、GB/T 10240-88《电声产品声音质量主观评价用节目源编辑制作规范》邀请业内专家与受训普通听众共同对音箱进行低频力度、中频平坦度、高频饱满度、保真度、拟合度五项测试进行主观评价。通过拟人声和音乐欣赏两方面,判断语音清晰及洪亮程度,以及音质优劣。在拆机分析方面,将基本硬件平台拆分为五个模块,分别是麦克风阵列、主控芯片DSP、扩声单元、数字功放、通信模块。对五款产品每个模块的材料选用进行了横向对比,展现了科研机构的专业性和严谨性。1. 麦克风阵列,主要目的是拾取语音,加载数字音频处理算法可以实现降噪、回声抑制、去混响、声源定位,解决远场拾音问题,与远讲语音识别算法相匹配。(1)小米AI麦克风阵列,六全向硅麦克风,I2S接口数字硅麦。(2)天猫精灵麦克风阵列,六全向硅麦克风,TI ADC3101接口。(3)叮咚麦克风阵列,7+1麦克风阵列,科胜讯CX20810-11Z接口。(4)出门问问麦克风阵列,双麦克风,科胜讯CX20921接口。(5)月石智能语音机器人麦克风阵列,六全向硅麦克风。2.主控芯片,完成的功能是对语音语义的解析理解。与手机等移动设备相类似,包括处理器、存储器、内存等核心部件。主控单元主要完成前端语音信号的整合以及后端语音拾取进行整合。主控单元的选择需要在满足语音交互响应速度的前提下,尽量压缩成本和功耗。被测的五款样品主控单元如下表:3.扩声单元,提供用户认可的音质。智能音箱扩声部分设计有一定的限制,在发声单元的选择上,受到音箱尺寸限制,低音不足,辅助低音被动辐射器。另外,全双工的工作要求限制了音箱的最大音量,发声单元功率太大会影响音箱拾取用于语音的灵敏度。五款音箱扩声单元选用如下:(1)小米AI小米的主扩使用的是2.25寸全频扬声器,从低频一直到高频。配套了两个对称的32平方厘米的辅助低音被动辐射器。国内外知名音箱产品多数带有导向管,用导向管来补偿低音。但是导向管补偿低音的时候会带来风噪,无论前置还是后置都有风噪进入到音箱,就影响到低频带来噪声。而小米是采用45度的导向锥,改变了中高频的传播方向。(2)天猫精灵天猫精灵使用全频扬声器,带了两个对称的辅助低音被动辐射器组成。3)叮咚叮咚智能音箱是4个1.5寸的全频带单元的,主扩。3寸1个低音单元,里面采用U形的导向管,同时在喇叭前面加了一个导音锥。(4)出门问问出门问问是1寸高音单元,有50W大功率,3寸低音单元,两侧配有两片被动辐射器,共振增强低音效果。(5)月石智能语音机器人月石智能音箱,两个6欧的3W的扬声器,也配备了两个波动辐射器。4.数字功放模块,扬声器需要好的功放来支撑将我们播放的音频尽可能真实、低失真的传导到发声单元上。功放单元五款产品中基本四款都是选用的TI公司的功放芯片,四款功放芯片不尽相同,其中有两种接口,小米选用的功放芯片具有I2S接口,即数字的音频接口,不需要经过第二次转换,并且该功能芯片支持多种速率,可以使用软件接口进行部分控制;天猫精灵的功放芯片略为简单;月石智能音箱功放芯片是一个模拟信号输入,搭载了TI公司的主控芯片。5.通讯模块是连接语音开放平台,获取内容资源,使用WIFI/蓝牙技术连接,提升手机的音质,让音乐得到分享。厂家可以通过丰富内容资源,增加用户粘性。此次评测结果显示,五款智能音箱在交互性能与音质综合评分上都略有不足。同时也证明了并非越贵的产品性能越好。优秀的智能音箱产品应该兼顾智能与音质双方面,但目前行业浮躁的气氛使得制造商忽略了产品品质与使用体验。希望通过此次评测能够改变行业风向,同时告诉消费者好的智能音箱的标准,了解智能音箱优劣。此前,中电三所泰瑞特研究曾对10款头戴式耳机进行评测并成立音质评价实验室,后续还将针对降噪耳机等不同类型电声产品持续开展系列评测活动,致力于利用专业评测结果向消费者推荐优秀的电声产品,践行品质为先的理念,不断推动行业产品革新和技术进步。本文仅代表作者观点,不代表百度立场。系作者授权百家号发表,未经许可不得转载。科技犬百家号最近更新:简介:游走在科技IT数码3C家电圈的小短腿!作者最新文章相关文章}

我要回帖

更多关于 智能音箱语音交互 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信