irf3205的开启电压压4.5V左右 N沟 Vds:110V 知道是什么MOS管的请说一下

有体二极管的N-MOS,施加驱动,使其保持导通状态,如果Vds(漏极源极电压)加反向压降;_百度知道
有体二极管的N-MOS,施加驱动,使其保持导通状态,如果Vds(漏极源极电压)加反向压降;
使得源极电压高于漏极电压,那么电流是流过体二极管呢?还是MOS呢?
我有更好的答案
//c.jpg" esrc="http。1:MOS管只要开通后就变成一个内阻很小的开关,不管电流从漏极流向源极还是从源极流向漏极.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=53dc2b886d/cbacb78078,都不会影响开能状态:
采纳率:76%
为您推荐:
其他类似问题
您可能关注的内容
vds的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。N沟道增强型MOS管中假设使VGS大于开启电压,漏源两极的电压VDS开启电压,我不明白后面那两个式子是怎么得到的,我看的
N沟道增强型MOS管中假设使VGS大于开启电压,漏源两极的电压VDS开启电压,我不明白后面那两个式子是怎么得到的,我看的是模拟电子第三版,谁能给讲下
1、UGD=UGS-UDS,这是定义,没有什么好说的.2、第三个式子是从第二个推导出来的.3、整个公式其实是从实验获得,你如果仔细研究一下结型管的数据获得明白了.具体过程是这样的.(1)首先设定UDS为0,然后慢慢增加UGS,等到UGS〉UGS(th),管子两端只要加微量电流,管子就可以导通,此时沟道形成了.(2)当UGS为大于UGS(th)的某个特定值,然后增加UDS.当UDSUGS-UGS(th),此时管子的电流就不会随着UDS变化而变化了,基本上维持恒定,只与UGS有关系,UGS越大,电流越大.我不太喜欢用UGD表示,还是用UDS和UGS表示比较直观.模电很多结论一方面是从半导体物理基础研究而来,也有很多是从实验结果获得的. 再问: 可是栅极和漏极怎么联系在一起呢 再答: 就是从夹断角度研究的,UDS逐步增大过程中,UGD逐步减小,靠近漏极的导电沟道开始变窄。从这里可以看出,UGD其实就代表着导电沟道的宽窄变化。 以上这些内容在分析结型管时写得清清楚楚,我用的是童诗白的《模拟电子技术基础》第四版,P41。其实结型管的分析方法与MOSFET非常相似,而且结构更简单一些,两者只是工作原理不同,但在分析工作状态时,手法相当接近。再问: 夹断知道,比较这两个电压能得岀什么? 再答: 管子的状态啊,MOS管是电压控制器件(这个你应该知道,既然是电压控制器件,不比较电压难道还比较电流不成?),各极之间的电压关系可以反映管子的工作状态(饱和、截止、放大)。这跟三极管用电流表示工作状态不是一样的嘛。三极管的时候,你可以认为,Ic
我有更好的回答:
剩余:2000字
与《N沟道增强型MOS管中假设使VGS大于开启电压,漏源两极的电压VDS开启电压,我不明白后面那两个式子是怎么得到的,我看的》相关的作业问题
没有看过华成英的《帮你学模拟》.但三个不等式中:“uGS>uGS(th),且uGD>UGS(th)即uDS>uGS-UGS(th)”中间的一个错了!应为:uGD
因为在沟道夹断以后,当UDS 逐渐增大时,所增加的电压将主要降落在夹断区(使夹断区有一定的扩展),而剩余的沟道尺寸基本上不随UDS 的增大而变化,所以通过剩余沟道的电流——也就是输出电流ID基本上不变.注意:沟道夹断不同于不存在沟道!详见“http://blog.163.com/xmx028@126/”中的有关说明.
  1、防止有电流从衬底流向流向源极和导电沟道,这里是防止衬底与源极的PN结导通,导通了的话,就会有电流从衬底的低掺杂的P型硅片流向源极的高掺杂N+区.2、将衬底与源极相连接,两者的电位就相同了,没有正向压降,两者间的PN结就不会导通,从而就不会有电流流过PN结.3、也可以不连接衬底与源极,但是要保证衬—源之间电压U(
因为场效晶体管的输入电阻rGS是很高的,比RG1或RG2都高得多,三者并联后可将rGS略去.显然,由于RG1和RG2的接入使放大电路的输入电阻降低了.因此,通常在分压点和栅极之间接入一个阻值较高的电阻RG,这样就大大提高了放大电路的输入电阻.图见这里http://www.dz3w.com/pic/.47
从结构上看,N沟道耗尽型MOS管与N沟道增强型MOS管基本相似,其区别仅在于栅-源极间电压vGS=0时,耗尽型MOS管中的漏-源极间已有导电沟道产生,而增强
要知道 导电本质是电子的移动 你可以这样理解 Vgs=0时不导电,可以利用pn解释为空间电荷区在外电场作用下加宽阻碍了电子的运动那么在沟道被空穴填满是情况更加不乐观了 高浓度的空穴会加快与N+区得电子中和 ,从而形成更宽的耗尽层 电子移动更加困难 在沟道里充满电子的情况是呢?衬底里的空穴被排斥,电子被吸引 这是可以认为
这部分其实在模电书里面写得很清楚了,只是你要反复看书,这部分内容是需要悟出来的.当UGS从0开始,逐步增大(UGS〉0)的时候,G极会积聚正电荷,而S与衬底B其实是连在一起的,也就是负极,这时候,衬底里面的空穴(带正电)会被G排斥,逐步远离G极,这样在衬底(P区)里面就形成了以不能移动的负离子为主的耗尽层.当UGS增大
增强型比较清楚:1、P沟道增强型:当UgsUgs(th)时,开启.这个Ugs(th)是一个正数值,最常见的是在2V 4V之间.耗尽型的管子比较少见.1、P沟道耗尽型:当UgsUgs(off)时导通,这个Ugs(off)是一个负数值.
NMOS增强型,ugs(th)一般是正数,最常见的是在2-4V之间,正常导通时的UGS一定大于Ugs(th),因此也一定是一个正数.耗尽型的不称为ugs(th),而是ugs(off),也就是夹断电压,这个值通常是一个负数.也就是说,只要UGS>UGS(off)就可以导通,这个数值就不好说了,可以是负数,也可以是0,也可
1.N沟道MOS管与P沟道MOS管工作原理相似,不同之处仅在于它们形成电流的载流子性质不同,因此导致加在各极上的电压极性相反. 应用得最多的是N沟道增强型MOS管 2.N沟道增强型MOS管的工作原理:http://www.edacn.net/html/27/.htmlhttp://www.8ttt8
不好意思,这个不是我的专业,不过我想你只要在网上随便搜索一下,就可以找到很多
几种那么多我是不知道,我有用过一个你可以试用A03460参数你可以网上查下,有很多 再问: 哥们没有啊。,A03460 百度一搜啥都没有 详细点啊 再答: 百度搜是有点问题,不过百度不太喜欢别人搞外链,截个网址的给你看吧
栅极和源极、栅极和漏极之间的电阻几乎可以算无穷大,而源漏极之间的电阻则要看场效应管的类型、型号和外加电压,加电压和不加电压会不同,电压高和电压低也会不同,同样的电压增强型和耗尽型场效应管也会不同,同样是增强型或耗尽型,型号不同,电阻值也会不一样,不会都有一个同样的阻值.
N沟道MOS管也就是说S、D为N+区,其沟道为N型,即为电子.N沟道耗尽型MOS管是MOS管不需要工作电压就有了导电沟道,而P型增强型MOS管则是需要一定的电压才能反型.作为N沟道耗尽型MOS管,在制造过程中,S、D之间的衬底表面形成了导电沟道,其原因就是往沟道区域注入了磷离子或砷离子,一般来说是磷离子,砷离子常被用来
源漏互换了.其实一个mos管物理实现上是不区分源漏的,两边完全对称,只有外加电压后才有源漏一说. 再问: 能不能说具体点啊, 你的意思是 外家栅源电压后, 漏源才有区分,那假如是N沟道的话,只能是漏源电压正,才可以有电流是吧 再答: 是的,但是你那样说是不准确的。只要源漏间有压降,沟道就会有电流,而电流的方向又决定了提
1. 源极和衬底连接是MOS管的一种用法.两者相连时相当于pn结(衬底-源)上接零电压,pn结耗尽区中漂移流与扩散流平衡,pn结上总电流为零.2. 栅源不加电压时,沟道不开启,不会有漏源电流.漏-衬底-源寄生三极管无电流的原因是:在正常工作条件下,衬底(寄生三极管基区)电势最低,因此寄生三极管亦无电流.3. 当漏极电压
只有第④个是假命题,其他都是真命题④若α、β相交,a,b不一定相交.还有异面的情况看图吧 再问: 你这画的不是②的情况吗? 再答: 这个图也符合(4)啊再问: 那2、4不都是假命题了吗 再答: 这个图不符合(4),我举例子把(4)驳倒即可,也就是举反例 (2)是真命题,你能举反例推到(2)吗?,不然你试试 注意:垂直包
为了提高MOS管的电气特性,尤其是耐压和耐电流能力,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical&MOSFET),其具体工作原理为(参见下图):截止:漏源极间加正电源,栅源极间电压为零.P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过.导电:在栅源极间加正电压UG
1层虽然看起来像很多层,实际上每个细胞都是生长于基底膜上的.所以只是一层细胞当前位置: >>
20V6A场效应管P沟道MOS管
DTC2059P-Channel 20 V (D-S) MOSFETPRODUCT SUMMARYVDS (V) - 20 RDS(on) (Ω) 0.075 at VGS = - 4.5 V 0.081 at VGS = - 3.6 V 0.090 at VGS = - 2.5 V ID (A) - 6.6a - 6a - 6aSFEATURESQg (Typ.) 12.5 nC? Halogen-free According to IEC
Definition ? TrenchFET? Power MOSFET ? 100 % Rg Tested ? Compliant to RoHS Directive 2002/95/ECAPPLICATIONS? Portable Devices - Load Switch - Charger Switch - Battery Switch - DC/DC ConverterDGDGDSP-Channel MOSFETABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted)Parameter Drain-Source Voltage Gate-Source Voltage TC = 25 °C Continuous Drain Current (TJ = 150 °C) TC = 70 °C TA = 25 °C TA = 70 °C Pulsed Drain Current Continuous Source-Drain Diode Current TC = 25 °C TA = 25 °C TC = 25 °C Maximum Power Dissipation TC = 70 °C TA = 25 °C TA = 70 °C Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) TJ, Tstg PD IDM IS ID Symbol VDS VGS Limit - 20 ± 12 - 6.6 a - 6a - 6a, b, c - 5.2b, c - 20 - 4.8 - 1.9b, c 5.7 3 2.3b, c 1.2b, c - 55 to 150 260 °C W A Unit VTHERMAL RESISTANCE RATINGSParameter Maximum Junction-to-Ambient Maximum Junction-to-Foot (Drain) Notes: a. Package limited. b. Surface mounted on 1& x 1& FR4 board. t≤5s Steady State Symbol RthJA RthJF Typical 45 18 Maximum 55 22 Unit °C/W1 DTC2059SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)Parameter Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Currenta Drain-Source On-State Resistancea Forward Transconductancea Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulse Diode Forward Current Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Reverse Recovery Fall Time Reverse Recovery Rise Time IS ISM VSD trr Qrr ta tb IF = - 5.2 A, dI/dt = 100 A/?s, TJ = 25 °C IS = - 5.2 A, VGS = 0 V - 0.8 20 10 10 10 TC = 25 °C -6 - 20 - 1.2 40 20 A V ns nC ns Ciss Coss Crss Qg Qgs Qgd Rg td(on) tr td(off) tf td(on) tr td(off) tf VDD = - 10 V, RL = - 1.9 Ω ID ? - 5.2 A, VGEN = - 10 V, Rg = 1 Ω VDD = - 10 V, RL = 1.9 Ω ID ? - 5.2 A, VGEN = - 4.5 V, Rg = 1 Ω f = 1 MHz 0.9 VDS = - 10 V, VGS = - 10 V, ID = - 6.5 A VDS = - 10 V, VGS = - 4.5 V, ID = - 6.5 A VDS = - 10 V, VGS = 0 V, f = 1 MHz
25 12.5 2 4 4.6 25 20 30 12 10 10 27 12 9.2 50 40 60 25 20 20 55 25 ns Ω 38 19 nC pF VDS ΔVDS/TJ ΔVGS(th)/TJ VGS(th) IGSS IDSS ID(on) RDS(on) gfs VGS = 0 V, ID = - 250 ?A ID = - 250 ?A VDS = VGS, ID = - 250 ?A VDS = 0 V, VGS = ± 12 V VDS = - 20 V, VGS = 0 V VDS = - 20 V, VGS = 0 V, TJ = 85 °C VDS ≤ - 5 V, VGS = - 4.5 V VGS = - 4.5 V, ID = - 4.9 A VGS = - 3.6 V, ID = - 4.6 A VGS = - 2.5 V, ID = - 2.0 A VDS = - 10 V, ID = - 4.9 A - 20 0.060 0.076 0.083 16 0.075 0.081 0.090 S Ω - 0.6 - 20 - 14 3.2 - 1.4 ± 100 -1 -5 V mV/°C V nA ?A A Symbol Test Conditions Min. Typ. Max. UnitNotes: a. P pulse width ≤ 300 ?s, duty cycle ≤ 2 %. b. Guaranteed by design, not subject to production testing.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.2 DTC2059TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)20 V GS = 5 V thru 3 V 16ID - Drain Current (A) ID - Drain Current (A)5 V GS = 2.5 V 41238V GS = 2 V2 T C = 25 °C 14 V GS = 1.5 V 0 0 0.5 1.0 1.5 2.0 2.5 3.0T C = 125 °C 0 0 0.5 1.0 T C = - 55 °C 1.5 2.0VDS - Drain-to-Source Voltage (V)VGS - Gate-to-Source Voltage (V)Output Characteristics0.08 V GS = 2.5 V 1500RDS(on) - On-Resistance (Ω)Transfer Characteristics18000.06C - Capacitance (pF)1200Ciss0.04 V GS = 3.6 V900600 Coss 300 Crss0.02V GS = 4.5 V0 0 4 8 12 16 200 0 3 6 9 12ID - Drain Current (A)VDS - Drain-to-Source Voltage (V)On Resistance vs. Drain Current10 ID = 6.5 AVGS - Gate-to-Source Voltage (V)Capacitance1.6 V GS = 4.5 V; 3.6 V; I D = 4.9 A 1.4RDS(on) - On-Resistance8 V DS = 10 V 6 V DS = 5 V V DS = 16 V 4(Normalized)1.2 V GS = 2.5 V; I D = 2 A 1.020.80 0 5 10 15 20 25 300.6 - 50- 250255075100125150Qg - Total Gate Charge (nC)TJ - Junction Temperature (°C)Gate ChargeOn-Resistance vs. Junction Temperature3 DTC2059TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)100 0.12 ID = 4.9 A 0.10IS - Source Current (A) RDS(on) - On-Resistance (Ω)T J = 150 °C 100.080.06 T J = 125 °C 0.04 T J = 25 °C 0.021T J = 25 °C0.1 0 0.2 0.4 0.6 0.8 1.0 1.20 0 1 2 3 4 5VSD - Source-to-Drain Voltage (V)VGS - Gate-to-Source Voltage (V)Forward Diode Voltage vs. Temperature1.2 1.140 50On-Resistance vs. Gate-to-Source Voltage1.0 ID = 250 μA 0.9 0.8 0.710 Power (W) VGS(th) (V) 30200.6 0.5 - 500 10-3- 25025507510012515010-210-11 Time (s)10100600TJ - Temperature (°C)Threshold Voltage100 Limited by RDS(on) * 10ID - Drain Current (A)Single Pulse Power1 ms 1 10 ms 100 ms 1s 10 s DC BVDSS Limited0.1 TA = 25 °C Single Pulse 0.01 0.1110100VDS - Drain-to-Source Voltage (V) * VGS & minimum VGS at which RDS(on) is specifiedSafe Operating Area, Junction-to-Ambient4 DTC2059TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)12 65 9ID - Drain Current (A)4 Package Limited 6 Power (W) 75 100 125 15032 3 10 0 25 500 25 50 75 100 125 150TC - Case Temperature (°C)TC - Case Temperature (°C)Current Derating*Power Derating* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.5 DTC2059TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.50.2Notes:0.1 0.1 0.05t1 PDM0.02t1 t2 2. Per Unit Base = R thJA = 95 °C/Wt2 1. Duty Cycle, D =Single Pulse 0.01 10-4 10-3 10-2 10-1 13. T JM - TA = PDMZthJA(t) 4. Surface Mounted10100600Square Wave Pulse Duration (s)Normalized Thermal Transient Impedance, Junction-to-Ambient2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.50.2 0.1 0.1 0.05 0.02Single Pulse 0.01 10-4 10-3 10-2 10-1 1 10 Square Wave Pulse Duration (s)Normalized Thermal Transient Impedance, Junction-to-Foot6 3DFNDJH,QIRUPDWLRQPackage outline - SOT89D D1 C AHEE1L B B1 e e1DIM A B B1 C D D1Millimeters Min 1.40 0.44 0.36 0.35 4.40 1.62 Max 1.60 0.56 0.48 0.44 4.60 1.83Inches Min 0.550 0.017 0.014 0.014 0.173 0.064 Max 0.630 0.022 0.019 0.017 0.181 0.072DIM E E1 e e1 H LMillimeters Min 2.29 2.13 Max 2.60 2.29Inches Min 0.090 0.084 Max 0.102 0.0901.50 BSC 3.00 BSC 3.94 0.89 4.25 1.200.059 BSC 0.118 BSC 0.155 0.035 0.167 0.047Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches1 Legal Disclaimer Notice DisclaimerALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Din-Tek”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Din-Tek’s knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Din-Tek’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.Material Category PolicyDin-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC
definition. We confirm that all the products identified as being compliant to IEC
conform to JEDEC JS709A standards.1 DTC2059P-Channel 20 V (D-S) MOSFETPRODUCT SUMMARYVDS (V) - 20 RDS(on) (Ω) 0.075 at VGS = - 4.5 V 0.081 at VGS = - 3.6 V 0.090 at VGS = - 2.5 V ID (A) - 6.6a - 6a - 6aSFEATURESQg (Typ.) 12.5 nC? Halogen-free According to IEC
Definition ? TrenchFET? Power MOSFET ? 100 % Rg Tested ? Compliant to RoHS Directive 2002/95/ECAPPLICATIONS? Portable Devices - Load Switch - Charger Switch - Battery Switch - DC/DC ConverterDGDGDSP-Channel MOSFET
赞助商链接
N沟道和P沟道MOS FET开关电路_电子/电路_工程科技_专业资料。N 沟道和 P 沟道 MOS FET 开关电路 在电路中常见到使用 MOS FET 场效应管作为开关管使用。...而 P 沟道常见的为低压 Mos 管。 场效应管的名字也来源于它的输入端 (称...常用N沟道mos管参数 2页 免费
20V P沟道增强型MOS管 3页 免费 喜欢...图号 项目 沟道类型 增强型或 耗尽型 (a) N 结型 (b) P 结型 (c) ...已知 VDD=20V,RG=51MΩ,RG1=200kΩ,RG2=200kΩ,RS=22 kΩ, 场效应管...若 P 沟道则在备注栏中注明) HEMT 高电子迁移率晶体管 SENSE FET 电流敏感动率 MOS 场效应管 SIT 静电感应晶体管 IGBT 绝缘栅比极晶体管 ALGaAS 铝家砷 4...MOS/CMOS 集成电路简介及 N 沟道 MOS 管和 P 沟道 MOS 管 在实际项目中,...确定值时,漏――源电压 vDS 对导电沟道及电流 iD 的影响与结型场效应管相似...一:场效应管的主要参数 (1)直流参数 饱和漏极电流 IDSS 它可定义为:当栅、...型管简称MOS管,并且大多采用增强型的N沟道,其次是增强型的P沟道, 结型管和...20V0.35MA0.1W
2E3C NMOS GDS ...600V6A35W 30/880nS1.1 2SK2147 NMOS GDS 开关...场效应管参数大全 5页 免费
MOS场效应管参数手册...场效应管讲解_其它_高等教育_教育专区。这是最后一个常用的基本元件的讲解了,...P 沟道 MOS 管: 这个图中的 SI2305 就是 P 沟道 MOS 管,由于有很多朋友...沟道 小贴片 MOS 6A60 600V 6A N 6N70 700V 6A N 6P25 250V 6A 70L02...3A 2。5W P 沟道场效应 FDS9945 高压板用。双 N 沟道 MOS 管,8 FQAF...20V/-20V 1.4V 6.5A/-6A 28A/-26A 23mΩ SOP8 量产 AP4503/AP4501/...场效应管(MOSFET)N、P沟... 1页 免费
FDV301N - 场效应管 MOS... 5页...
All rights reserved Powered by
www.tceic.com
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。【图文】3.MOS管模型_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
3.MOS管模型
&&深圳大学 电子科学与技术学院 微电子学 集成电路CAD
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢【图文】第二章 MOS器件物理基础_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
第二章 MOS器件物理基础
&&第二章 MOS器件物理基础
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢}

我要回帖

更多关于 n沟道mos管导通电压 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信