9d虚拟现实体验馆视频要投资多少钱 TCQ

开vr体验店需要办什么工商执照_百度知道
开vr体验店需要办什么工商执照
我有更好的答案
涉及到产业领域很多,一般选择一个你要从事的领域,现在工商局估计没有VR这个门类,申请会容易一些。力给VR体验店,比如体验店,电子设备销售,VR游戏制作VR是新产业领域
就半个公司的营业执照就可以,别办娱乐经营的。管得太多,但是需要有放映许可。
这个跟医师资格证没毛关系吧。不过还是得赞一个,毕竟打了这么多字
为您推荐:
其他类似问题
您可能关注的内容
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。【VR体验馆】苏州VR体验馆哪家好? - 百度糯米
有即将到期的糯米券笔订单未评价笔订单未付款条新的商家回复百度糯米:nuomivip
热门分类中国菜外国菜热门影片热门院线
分类区域地铁附近行政区价格&优惠券
支付宝-特约商家
可信网站 身份验证您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
电子电路虚拟实系统的设计与实现.pdf84页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
文档加载中...广告还剩秒
需要金币:280 &&
电子电路虚拟实系统的设计与实现
你可能关注的文档:
··········
··········
摘要 摘要 本文对虚拟实验的各种实现技术进行了系统的研究,分析了虚拟实验系统实
现的核心技术,给出了《电子电路虚拟实验系统》的主体框架设计,完成了多个
模拟电路元器件的三维模型的建模和电路连接算法和检查算法设计,开发了一个
用于实现场景漫游的三维图形引擎,最终完成了一个以元器件为实验单元、设计
性、开放式、高仿真、高交互性的、适用于模拟电路的《电子电路虚拟实验系统》 的开发,主要工作如下:
建模。有效提高了三维模型的逼真程度和整个系统的沉浸性、可交互性,为减少 3D等软件对所有的三 由于追求真实感而造成对硬件要求过高,采用MilkShapc
维模型进行优化,基本解决了三维模型的真实感与资源开销之间的矛盾。 2、模拟电路的仿真,是一件非常复杂、技术要求高且工作量很大的工作,
进行研究后对SPICE仿真软件进行了第二次开发。重点是对其输出模块进行了
改造,使之能对仿真结果文件作出正确的解析得到仿真结果,再对仿真结果作出
适当的采样,使之既能为电路元器件状态的改变提供原始数据,又能减少采样所
需时间,增加实时性,实现了仿真内核与整个系统的无缝结合。 3、针对CIR.文件格式对电路对象和实验场景进行面向对象封装;并设计了
电路连接算法和检查算法来得到各个元器件的管脚的节点号,前者能提供元器件
参数,后者则是对电路连接情况的描述,通过二者结合,可随着电路连接情况的
变化而实时生成描述电路的SPICE的输入文件。
形引擎,为实验者提供了一个逼真的三维实验环境,实现了场景漫游 包括可按
实验者的要求即时载入和删除元器件、可以完成连线和删线操作、可以对场景内
正在加载中,请稍后...开VR体验馆真的不挣钱?背后的真相你知多少?-筑龙博客
这家伙没有什么简介。
开VR体验馆真的不挣钱?背后的真相你知多少?
  VR这个行业从2016年开始兴起,很多人想抓住机遇发一笔财,因此会有很多人想要开体验馆或者小型的个体店。有人赚了有人亏了,因为网上很多人流传说开VR体验店不挣钱。那么VR体验店的背后到底你又了解多少呢?我们来看一下。  你也许注意到了,最近这样的虚拟现实体验店不断出现在商场、影院、广场……在北京,大众点评收录的和“VR”相关的店铺就有 45 家,他们大多从去年下半年开始营业。  为何体验店会成为VR领域目前火爆的方向?  广州VR游乐设备好集乐创始人漆总称,因为类似于VIVE这类高端VR设备,售价太贵、对电脑的配置要求很高,完整配套下来,至少需要花费一万五千元以上,同时,VR体验又要求一定的物理空间,而且很多普通民众对VR还不了解,种种原因导致了VR在体验店体验更好。  “将VR体验做成一门生意,并非只有硬件达标就可以实现”,漆总表示。他算了一笔帐:以广州万达广场体验店为例,目前的营业额为每月15万,客流量约为每月3000人次,包含房租、人员开支等运营成本约占营业额的50%,如果精打细算,VR体验店还是一个非常挣钱的方向。  然而,并非所有的体验店都这么幸运。此前有媒体报道称,有创业者对VR体验店的预期过高,因人流量不足,在半年之内亏光了130万。其实,除了选址、定价等等关于线下店铺的因素,漆总认为,另一个很重要的部分是内容。“选址、定价等因素很重要,但硬件、内容相结合才是稳妥走下去的根本”,“因为市场还处于教育阶段,提供不够优质的内容会让体验者失去对VR的信心”,漆总说。  这就意味着,支撑体验店运行的,不仅是要提供体验度最好的硬件设备,内容上必须保持更新。“我们正在争取让优秀的VR游戏在线下体验店发布一段以后再登陆线上平台,就跟电影发行一样”,漆总称,同时会将密室逃脱的经验用在体验店运营和游戏开发上,并引入到体验店中来。“将VR体验做成一门生意,是很复杂的事情,VR行业本身还需要继续发展,需要更多的优质内容支撑,等消费者被教育好了,这个行业就会迎来春天“。  我们来到其中一家合作加盟的体验店,它开在广州万达广场人流量最大的商场街,占地 120 平方米,位置是地下二层,正对地铁出口。  我们和这家开业已经半年时间的体验店负责人聊了聊,他们的经历也许能够在一定程度上回答一些问题:为什么这么多人做这东西?这生意到底挣钱吗?花费几十块,能买到的还是初级VR 体验。它的店里摆放着近 10 台设备,不同的游戏配有不同的座椅,比如赛车,它就像你在电玩城看到的那样,只不过屏幕被虚拟现实头盔代替。    VR 体验店的总经理李经历告诉记者,他们的头盔基本上是从大朋这家位于深圳的硬件厂商采购。而座椅则需要另寻厂家定制出解决方案,让它们和不同的游戏内容相匹配。    目前来看,大朋的体验并不好。尽管它不是那种塞个手机进去的塑料盒子,也需要连接电脑,但受制于屏幕的质量和处理器性能,我们玩到的游戏并不流畅,令人头晕,并且画面的颗粒感非常严重。  这和 HTC Vive 和 Oculus 的使用体验截然不同,相比之下,这些头盔和手机盒子的粗糙效果没什么差别。  总的来说,这里的东西可能更吸引对虚拟现实完全没有概念的人,比如小朋友。  在这个问题上,体验店的经营者有着单纯的出发点:节省成本。  “HTC 的价格太贵,是大鹏的三倍,”李经理说,Vive 的效果的确是好,但目前大部分体验店都用的是几家国产厂商的设备,就是因为便宜。“加上 HTC 对电脑的要求特别高,一整套下来要 3 万,但是要配大鹏的可能只要 7000 多块。”  抛开很难买到这个因素,如果购置 Vive、Oculus 设备和游戏,用抬高票价来收回成本呢?李经理认为这也并不可行,考虑到大众的接受度、门店周边的物价,高价并不一定能带来更多的顾客。  “即便给了你最好的设备,你不琢磨后面的事,怎么推广、怎么营销,还是没用。”用来挣钱的不是只有门票。这家体验店的单次体验价格在 30 - 60 元,共有 100 多种游戏。这个价格在广州的常营地区,大约等于一张电影票。  但VR 体验店吸引来的消费却远不及电影院。按照李经理给出的数据,店面一天接待 30-40 人左右。  我们在某个周末的下午 6 点左右来到体验店,在大约 30 分钟的观察里,相继有 30 多个路人被摆在门口的一堆虚拟现实眼镜吸引而来,但并没有一位掏钱购买门票。  门票没能让这家店填补前期投入的 100-150 万元人民币,李经理说至今“赔的不多”。  120 平米的店面,房租占到了月支出的三分之一,剩下的成本中,占比最高的来自设备。“游戏机成本的话大概在四五万块(一台)。最贵的设备是飞行模拟器,可以 720 度旋转,成本在十五六万。”这些设备需要定期更新和维护,这又是一笔开销。    也就是说,如果没有稳定增长的客流,门票收入似乎很难支撑一家门店的运营。  所以这家店想到了其他的盈利方式,比如做媒体。  在李经理的设定里,“线下体验店不会以营利为目标……为什么北青会做这个事?因为这是整个 VR 营销的一种渠道。”  所以在收门票之外,这家体验店做了一个“媒体平台”,和《法制晚报》合作,成立了一个“VR 新闻实验室”;店面可以租赁出去当做营销场地,同时虚拟现实用来制造噱头;或者作“技术展示”,让诸如虚拟现实看房等公司来这里做推广。  总之这些设想都和媒体、传播、做广告有些关系,“我们做的是有点像营销公司和广告公司,或者说是公关公司。”  不过问题在于,这部分业务能不能让线下店获得盈利,依然是个未知数。  体验店的角色很重要,但现在它的顾虑还有很多。尽管生意不好做,一个事实是,虚拟现实线下店的的作用越来越重要了,至少在做头盔的科技公司口中是这样。  HTC Vive 去年就宣布了一项和顺网科技的合作,Vive 的算盘是让自己的头盔进入他们遍布各地的网吧,以售卖门票的方式获得收入。上个月,HTC 又将目标具体到“一万个”,这其中包括苏宁和国美的门店。HTC 说这些体验站点将出现在“几乎所有的公共场所”。  HTC 的目的很明确,让更多的人知道虚拟现实、特别是 HTC Vive 都是什么,这是销售硬件的基础。而线下体验店的目标截然不同:让更多的人走进店里花钱体验。实现这个目标,经营者有很多顾虑。  比如覆盖人群的范围。他们最初的打算是在广州开10 家门店,这半年的经营状况让他们决定用“流动”站点来替代,因为一个门店的覆盖范围非常有限。“不能老在一个地方待着,”李经理说,想要在同一个店面快速提升营业额,就需要一大笔推广费用,而且效果不一定好。“但是我们在庙会,一天的收入大概相当于店里一个月收入的 2/3。”    线下店还要考虑怎么让人们产生二次消费。“现在的 VR 体验店,有一家能值得你一直去吗?”李经理说,目前来看体验店引来的大多是仅仅出于好奇心的一次性消费,不会像游戏厅一样吸引人反复进去。  但有趣的是,线下店正是靠着这种一次性消费而存活。“VR 体验店是在广大人民群众中普及虚拟现实知识的初级教练。”李经理认为,现在的虚拟现实普及率低,极客之外的人群不会追求高级的体验。这也是为什么线下店并不十分迫切地引入更贵、体验更好的虚拟现实设备。这是个没有必要、有消耗成本的事情。  而等到大部分人知道了虚拟现实是什么也有过体验,回头客产生,才是要谈“体验升级”的时候。赵曦辉的设想是,这个阶段要购置更好的设备、同时增加一些有对抗和排名游戏,让人产生再来一次的冲动。  李经理觉得这半年来行业的变化特别快,起码大城市里很多人知道虚拟现实了,“但这个变化足不足以支撑起一个特别厉害的行业,这事我不好说,我没看清楚。”目前很少有人真正体验过虚拟现实设备,包括科技业内的人。比如年初的西班牙全球移动世界大会上,参会的通信公司、软件公司人员也在三星的 Gear VR 展区也排起了长队。  线下体验店大概会是虚拟现实设备走向用户的一步。哪一天虚拟现实像计算机一样成为日常用品,线下店就会是只面向一小部分人的场所。就像现在的网吧,这不是大多数人使用计算机的地方。  其实每一家实体店或者体验店都需要用心经营,多学习如何能开好一个体验店以及它的开展方案。想要了解更多关于开体验店的方案吗?欢迎咨询广州好集乐游乐设备有限公司官网,我们给您最真挚的服务!  
心若向陽的最新博文
分享到微信朋友圈
打开微信"扫一扫",扫描上方二维码请点击右上角按钮&,选择&
同时发布一条微博
$(".zhul_sy_rightBox").popupbox({geturl:ucenterDomain+"openjson/getpopupbox",format:"bigright",cssClass:"zhul_info_rightbox",waithtml:' '});
$().zlidol({geturl:weiboDomain+"userinfo/jsonidol?action=idol"})
})(jQuery);技术小站:
& 参加直播现场,与专家互动,学最新知识
& 学习业内最热门知识,还有好礼送
& 看视频,填问卷,拿好礼
& 海量精华技术资源 限时在线阅读
张飞电子工程师速成全集
10天掌握PCB AD画板
教你高速PCB项目整体设计
如何设计STM32单片机系统?
物联网操作系统从写到用
讲师:华清远见
讲师:林超文
讲师:郑振宇
讲师:李述铜
移入鼠标可放大二维码
IC Temperature Sensors Find th
来源:本站整理 作者:佚名日 10:32
[导读] Abstract: This application note discusses the operating concepts behind temperature sensor ICs and introduces the MAX1617, the first temperature sensor IC to measure the temperature of a remote thermal diode which allows accurate monitorin
Abstract: This applicaon note discusses the operang concepts behind temperature sensor ICs and introduces the MAX1617, the first temperature sensor IC to measure the temperature of a remote thermal diode which allows accurate monitoring of the die temperature of another IC or discrete transistor.
Real-me temperature measurements ensure that today's smaller and faster systems operate in the safe thermal zone. The newest IC temperature sensors monitor external- and internal-component hot spots with pinpoint accuracy.
IC temperature sensors have come of age. Driven by PC and automove applications, designers have embedded these ubiquitous heat sniffers in almost every electronic system larger than a pager. Cellular phones usually include one or more sensors in the battery pack, and notebook computers might have four or more sensors for checking temperatures in the CPU, battery, AC adapter, and PCMCIA card cage. Consequently, the design and manufacture of IC temperature sensors has become a $300 million/year industry.
These applications do not cover the enormous number of thermal-shutdown and -protection circuits that designers build into all sorts of ICs as a final defense against short circuits and over-clocking (exceeding the IC's specified clock speed). They cannot always replace the traditional temperature sensors&resistance temperature detectors, thermistors, and thermocouples&but IC temperature sensors offer many advantages. They require no linearization or cold-junction compensation, for instance. Indeed, they often provide cold-junction compensation for thermocouples. They generally provide better noise immunity through higher-level output signals, and some provide logic outputs that can interface directly to digital systems.
Rube Goldberg Contraptions
A discussion of IC temperature sensors has become timely and important, because electronic systems are increasingly dense, power-hungry, and hot. Temperature sensors also have a lot of gadget appeal. Many ICs perform highly abstract functions. (Look! It's a quadrature-amplitude modulator!) But temperature sensors relate directly to the real world that clicks, whirs, and hums. Put your finger on a temperature sensor, and it responds by actuating a fan or a buzzer. The more complex sensors often resemble a Rube Goldberg contraption with a digital interface&having autonomous operation and perhaps an ability to broadcast warning messages with an identifying return-address code that pinpoints the originator.
In the early days of ICs, IC temperature sensors were simple DIP devices that measured their own package temperature and generated a proportional output-voltage signal. Applications were easy: You simply ran the analog output signal into a voltage comparator or an A/D converter. Today, a proliferation of new devices provides remote sensing, airflow sensing, and other interesting features. This article surveys the IC temperature sensors available by type and provides guidelines for matching them to applications and making a trade-off among their specifications and features.
A Temp Sensor in Every Bandgap
The &DVBE bandgap reference is the heart of nearly all IC temperature sensors. First, the term &bandgap& is something of a misnomer: It refers to the bandgap voltage of silicon, which is 1.12V at room temperature. By sheer coincidence, this value nearly equals the magic voltage at which a negative-temperature-coefficient (TC) VBE, summed with a positive-TC-canceling voltage, results in a stable, zero-TC reference.
The forward voltage of a silicon pn junction is
VBE = VG0(1-T/T0)+VBE0(T/T0)+(nKT/q)ln(T0/T)+(KT/q)ln(IC/IC0),
where T is the temperature in degrees Kelvin, VG0 is the semiconductor bandgap extrapolated to absolute zero, VBE0 equals VBE at temperature T0 and corresponding current IC0, K is Boltzmann's constant, q is the charge of an electron, and n is a constant related to the device structure. Evaluating this equation at two current densities gives a simplified expression for the resulting &DVBE:
&DVBE = (KT/q)ln(IC1/IC2).
Thus, the difference in forward voltage is directly proportional to temperature. With accurate forcing of the two current levels, you can calculate temperature from a measured &DVBE almost without regard to the initial forward voltage, physical size of the junction, leakage, or other junction characteristics. This principle underlies one of the most widely used IC cells in history, the Brokaw bandgap reference (Figure 1). You find this design or its close relative as part of the bias-current generator in the startup circuit of nearly every IC ever made&digital or analog.
Figure 1. All bandgap circuitry includes an electronic thermometer. In a MAX675 precision reference, the thermometer is accessible via a package pin. In other devices, it connects to a comparator, forming an emergency thermal-shutdown circuit.
The technique calls for forcing different current densities through the two transistors that form the heart of the reference. Though a discrete-component version, the bandgap circuit is similar to monolithic-IC versions. The two transistors operate with a current-density ratio of precisely 16 to 1. As the feedback from precision op-amp IC1 balances the circuit, the resulting VBE voltage is impressed across R1.
As current in R1 flows to ground through R2, the voltage generated at the emitter of Q2 has a positive TC of 2.2mV/&C. Summed with Q2's VBE, this voltage produces a zero-TC voltage at the VREF output terminal. IC2 buffers and scales the positive-TC voltage (VTC) to provide a precise output of 10mV/&C. Thus, most ICs contain a thermometer, but it is often of dubious accuracy and IC designers rarely make it available for external use.
The excessive leakage currents characteristic of silicon pn junctions limits the temperature for IC-based sensors to about 200&C. As a rule of thumb, these currents double with every 10&C rise in temperature. Excessive leakage current causes malfunctions in bandgap references and signal-conditioning circuitry.
Major Classes of IC Temp Sensor
Vendors classify IC temperature sensors according to the input source and output-signaling method. The temperature source to be measured is usually the IC's own package, but you can measure airflow with an on-chip heater that raises the package temperature above ambient, and you can measure remote temperature with a diode-connected transistor. On the output side, analog-output, thermostat-logic-output, and serial-digital-output signaling methods are in widespread use. Table 1 provides a sampling of temperature sensors.
The first IC temperature sensors were basic analog-output devices that generated a voltage or current proportional to temperature. They remain highly useful, especially in designing purely analog systems that can take advantage of the temperature indication's virtually infinite resolution.
Designers commonly use simple logic-output devices to control cooling fans and other thermostat applications. When the package temperature of the sensor crosses a preset threshold, the sensor's logic output changes state. These devices often have connections that let you adjust the threshold temperature and hysteresis band with external resistor dividers. Other devices internally fix the thresholds and hysteresis. These simple chips (for instance, Maxim's MAX6501 family) recently became available in small, low-cost packages, such as SOT-23.
IC temperature sensors are most effective when you integrate them as part of an ASIC. Older NiCd battery packs usually have an onboard thermistor&quite cost-effective at less than 25 cents&rather than an IC temperature sensor. Newer lithium-ion battery packs typically integrate the temperature sensor with the pack's protection IC, which also performs overcurrent protection, cell balancing, fuel gauging, and other tasks.
More sophisticated temperature sensors include a serial interface, such as the I²C, SPI, or SMBus, which provides communication with embedded microcontrollers and other digital systems. In a similar trend, more microcontrollers have a built-in serial interface that negates the need to &bit-bang& the interface pins. Dedicated serial interfaces are migrating up the food chain as well. The latest PC chipsets from Intel, for example, have an I/O-controller chip containing a state machine that forms a two-wire SMBus interface.
Table 1. Representative Temperature Sensors
Analog Devices AD590
Package temperature
Analog current
Very stable, immune to line-voltage drops in remote sensing, good noise immunity
Maxim MAX675, REF-01, LM45, Analog Devices AD22103
Package temperature
Analog voltage
SO-8 or SOT-23
Often combined with a voltage reference or other building blocks, shunt and buffered-VOUT types available
TMP01, TC620, Maxim MAX6502
Package temperature
Thermostat logic output
Built-in analog comparators, usually with adjustable hysteresis
Dallas Semiconductor DS1621, National Semiconductor, LM75 and LM78, Linear Technology LT1392
Package temperature
Serial digital interface
SO-8, SO-16
I²C, SPI, SMB sometimes built into large, multifunction A/D-converter ICs
Maxim MAX1617
Remote diode junction
Serial digital interface
16-pin QSOP
SMB monitors CPU temperatures directly
Serial-Interface Digital Sensors
The applications for which a serial data interface is most useful include CPU clock throttling and fan control. Clock throttling (lowering the clock frequency) is a well-established technique for improving the battery life in a portable system. Lower clock frequency results in lower capacitive switching losses, thus reducing supply current and extending battery life. Designers also use clock throttling to control the heat buildup that occurs when you overwork a blazing-fast desktop or notebook computer.
The power-management system monitors CPU temperature and lowers the clock frequency (perhaps activating a fan as well) when the CPU temperature exceeds a safe limit. A digital interface for the temperature sensor lets you include intelligence in the temperature-control loop, which lets the system apply different combinations of fan speed and clock-throttling in response to overheating in a particular zone. Software control also allows an easy upgrade when you change the system hardware or thermal properties.
The latest&and hottest&CPU chips support clock throttling with an internal pn diode for temperature indication. On-chip diodes are light-years ahead of thermistors and other previous sensors, because diodes directly measure the critical point (the IC substrate) directly without the delay associated with thermal mass in the package and heatsink of an external sensor. Another benefit of this remote-sensing technique is that die-attachment problems or poor heatsinking do not corrupt the measurement.
Most important, temperature-sense diodes eliminate the inaccuracy and uncertainty that result from the sensor's physical location along the path of thermal resistance from CPU to ambient. Designers can increase clock speed and standard benchmark performance right up to the thermal limit without using heavy, overengineered heatsinks or the overly conservative, worst-case performance boundaries necessary to accommodate ambient temperatures found only in the Sahara Desert.
The thermal diodes in new CPUs provide a raw indication of die temperature according to the diode-temperature coefficient of 2.2mV/&C. An A/D converter must process this signal for interpretation by the power-management system. One approach is to bias the diode with a constant current, measure its forward voltage, and compute temperature from the basic 2.2mV/&C TC. But this method carries a disadvantage: Because the initial forward voltage varies with process and device features, you may have to recharacterize the diode for every change in the CPU process or chip design, or even calibrate the diodes individually. The &DVBE technique is a better method.
Remote &DVBE CPU Sensor
Implementing the &DVBE method with a remote diode requires an integrating A/D converter, some logic for the math conversion, and a precise current source that switches between two levels with a ratio of perhaps 10 to 1. A monolithic IC, the MAX1617, includes these functions and converts the &DVBE signal to two-wire serial data (Figure 2). The MAX1617 is useful for CPU temperature measurements, because it senses two temperatures: that of its own package and that of a remote junction, such as the CPU's thermal diode. When you mount it near a critical heat-generating subsystem, such as the cache memory or the AC adapter, the IC simultaneously measures its local temperature and that of the remote CPU.
Figure 2. A serial-interface temperature-sensor IC readily measures remote CPU temperatures via a thermal diode in the CPU.
Accurate, low-cost IC sensors permit designers to make multiple remote-package and on-chip temperature measurements to squeeze the maximum performance from their systems. Dynamic adjustment of heat-causing parameters, such as clock speed, allows system operation to continue, even in a hostile temperature environment.
A similar version of this article appeared in the July 2, 1998 issue of EDN.
德州仪器(TI)
供应链服务
商务及广告合作
Jeffery Guo
关注我们的微信
供应链服务 PCB/IC/PCBA
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-}

我要回帖

更多关于 vr虚拟现实体验馆 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信