汇编语言单片机的P1口控制74HC164实验串并转换实现控制 LED 灯循环点亮。

led显示屏真彩色技术都有哪些,金合光电的小编在这里做详细的介绍。

LED电子显示屏要显示真彩图像,必须首先解决视频信号的实时采集,将模拟视频信号采集为数字视频图像。早期的做法是利用视频采集卡和一些带特征口(Feature-connect)的VGA卡相结合来实现。

视频采集卡用来捕获视频图像,再通过VGA特征口获得场频、行频、像素点频以及颜色查找表的索引地址,在跟踪CRT图像时可以通过复制颜色查找表的方法来获得红、绿、蓝分离的数字信号。一种方法是用软件定时复制,另一种是采用硬件窃取技术,后者更为有效、快速。

由于上述这种技术存在着与VGA卡兼容性差、边缘不清晰、图像质量较差等缺点,电子显示屏所显示的图象质量也受到了限制,为此,北京银河电脑公司于1998年研制开发出LED电子显示屏专用视频卡JMC-LED。

该卡基于PCI总线,采用64位图形加速器,将VGA和视频功能合二为一,负责视频数据与VGA数据的叠加,色空间变换,从根本上解决兼容性问题。应用全屏分辨率采集,YUV4:2:2无压缩存储技术保证视频图像的最佳化,视频窗口采用EST边缘增强技术,保证缩放后图像的清晰程度。支持制式为PAL和NTSC,视频窗口可以任意缩放、移动。

该卡可以将电子显示屏播放视频时所需的场频、行频、像素点频几个同步信号提取出来,并将红、绿、蓝三色信号分离出来。数字RGB格式为8:8:8,各可以产生256级灰度,能满足电子显示屏真彩播放的要求。

全彩LED电子显示屏的视觉原理与彩色电视机一样,是通过红、绿、蓝三种颜色的不同光强实现图像色彩的还原再现。红、绿、蓝的纯正度直接影响图像色彩再现的视觉效果。然而白光的三色配比不是简单的三种颜色的叠加。

第一、在保证光频纯正的前提下,要求红、绿、蓝光强之比必须接近3:6:1;

第二、由于人们视觉对红色的敏感性,要求红色发光源在空间上要分散分布;

第三、由于人们视觉对红、绿、蓝三种颜色光强的不同的非线性曲线响应,要求不同光强的白光对红、绿、蓝要进行类似电视机里的γ校正;

第四、人的视觉对色差的分辨能力有限。因此必须找出图像色彩再现真实性的客观指标。为了再现真实图像色彩,在LED电子显示屏的配光上应满足下面一些要求:?

①红、绿、蓝三色的波长应分别为:660nm、525nm、470nm左右;?

②采用4管单元配白光为佳(多管单元也可以,取决于光强);?

③红、绿、蓝三色的灰度级为256级;?

④必须采用针对LED像素管的非线性校正。?

红、绿、蓝三色配光及非线性校正可以用显示控制系统硬件实现,也可由播放系统软件实现。

从目前像素管的几种显示方式来看,可分为:①扫描驱动;②直流驱动;③恒流源驱动。对于户内点阵块屏,一般采用扫描方式;而对于户外像素管屏,要保证所显示的图像一致性好、稳定、高亮,必须采用直流驱动加恒流源方式。

较早的LED电子显示屏驱动电路大多采用低压信号的串并转换CMOS电路和大电流驱动的双极电路两块组成(如74HC595+MC1413/UNL2803、CD4094/MC14094+MC1413、74HC164+74HC273+MC1413),这种形式的驱动电路存在着焊点多、成本高、可靠性低等问题。

针对这些缺点,美国TI公司开发生产出TPIC6B595(TPIC6C595)专用集成电路(ASIC),它将串并转换和大电流驱动合二为一,这种ASIC具有如下显著特点:并行输出驱动能力大,单路驱动电流高达200mA,可直接驱动LED;电流电压范围宽,工作电压可在5~15V内灵活选用;串行输入、移位和锁存、时钟输入端口都设有施密特整形电路;串并输出电流大,吸收和供给电流都大于4mA,级连方便;数据处理速度高,串行时钟频率,fmax≥25MHz特别适用于多灰度彩色显示屏的LED驱动。

我国的无锡东大先行微电子有限公司也于1998年生产出与TPIC6B595完全兼容的ASIC芯片AMT,但价格大为降低。由于TPIC6B595的并行输出口仅为8位,驱动分辨率较高全彩显示屏时需要TPIC6B595的数量较大,且256级灰度控制较麻烦。

为此,美国TI公司研制开发出LED电子屏显示驱动专用集成电路TLC03,这种ASIC的优点是:恒流源输出5~80mA(或10~120mA);驱动能力为80mA×16Bits(或120mA×8Bits);PWM控制的256级灰度显示;亮度32级可调;时钟同步的8位并行数据输入。该芯片使得256级灰度控制更为简单,恒流源方式使得图像显示一致性更好,TQFP100的封装使得驱动板面积大为减少。

在此基础上,TI公司又研制性能更好的LED驱动专用芯片TLC5921。北京华虹集成电路设计公司也研制开发出性能优良的LED专用集成电路9701,这种ASIC具有如下显著特点:内含8×16×32数据扫描阵列,实现从静态至1/32动态扫描;数据输入扫描阵列和数据输出灰度控制分别采用两个独立的时钟;采用8位并行数据输入和8位并行数据输出的级连功能;16个数据输出端,每个端驱动LED电流可达80mA以上,每个端数据输出耐压大于20V;数据输出256级灰度;输出具有模式选择端,可用于奇、偶帧选择;具有非线性校正控制输入端。

4、亮度控制D/T转换技术

LED电子显示屏是由许多相互独立的像素点(发光元)排列而成,由于像素点的分离性,决定了其发光的控制和驱动只能以数字方式进行。这些像素点的发光状态由控制器同步地控制,独立驱动。视频真彩色显示意味着要对每一个像素点的亮度分别进行控制,并且要在规定的扫描时间内同步地完成。大屏幕是以数以万计的像素点组成的,这使得系统的复杂性较两值显示大屏幕而言大为增加,并对总体的数据传输速度提出了更高的要求。给每一像素点设置一个常规D/A显然是不现实的,必须寻找一种能最大限度降低系统复杂性且性能尽可能高的解决方案。

由视觉原理知道,人对像素点的平均亮度感觉可取决于它的亮/灭占空比。也就是说,只要对像素点亮/灭占空比进行调节,就能实现对亮度的控制。对LED电子显示屏而言,这意味着只要将代表像素点亮度的数字转换为像素点发光的时间(D/T转换),即实现了亮度的D/A转换。

设屏幕数据刷新的周期为,控制任意像素点亮度的数据为n位二进制数D=bi2i(其中bi=0或1),Ton为相应于D的发光时间,则像素点亮/灭的占空比为:d=Ton/Ts=D=bi2i。该表达式可用可预置减法计数器实现,但每一像素点配一计数器将使得显示电路异常复杂。上式改写为:Ton=Tsbi2i,这意味着可将Ton分成几个时间段,由于当足够小时,几个分离时间段合成的Ton与总长度相同的连续的Ton其视觉效果是相同的。于是,一般地有,对于n位二进制数据D=bi2i,将分Ts为n段,并选取适当时间分割函数f(i),使得第i段Ti=Tsf(i),其中0即为此像素点的亮/灭占空比。由于函数f(i)对所有像素点而言可以是共同的,因而上式表明,只要用f(i)统一控制各个像素点,就能实现全屏幕所有像素点相互独立而又同步的D/T转换。对于单个像素点来说用图1的电路可实现上式。图中SFR为8位移位寄存器,图为时间分割函数f(i)的波形。

大屏幕显示驱动电路通常采用“串行移位+锁存+驱动”的结构,以期尽量减少数据传送线。要全屏幕同时实现上式,只要将所有ST信号统一由f(i)控制即可。当然这样做的前提是要求移位寄存器中存放的是各个像素点控制数据中的同权位,而这可通过预先的数据处理做到。

5、数据重构与存储技术

存储器有两种组织方式:①组合像素法(PackedPixELMethod):即画面上每个像素的所有位均集中存放在单个存储体中;②位平面法(BitPlaneMethod):即像素的每一位各自存放在不同的存储体中。由于使用了多个存储体,它们可以一次同时读出更多的像素信息。从两种存储结构来分析,利用位平面结构有利于提高LED屏的显示效果。

整个LED显示屏显示控制电路结构框图如图3所示。其中,数据重构电路完成RGB数据的转换,将不同像素的同权位组合在一起,然后存放在相邻的单元中,从而以位的形式完成整个数据的重新组合。

数据重构电路主要由四大部分组成:8位数据并行传送电路;8位并-串转换电路;8位数据锁存电路;8位加1计数器。R/G/B各8位数据由经同步处理后的像素点频打入并行锁存器,8位加1计数器输出进位脉冲LD,将8位数据同时锁存到8位并-串转换电路,由时钟控制电路完成并-串转换电路时钟的控制。数据经过重构后,一个存储体中不再是一个像素值,而是不同像素值的同权位。将所有的同权位存放在一起,从而构成以位为单位的位平面存储结构。在读出时必须按相反的规则取出各像素的相邻权值。

读写地址发生器必须满足严格的时序。对同一存储芯片来说,可将其分为N片(一个像素值用N位表示),每片表示一个位平面,像素经过转换向同一存储器写入时,首先写0位,再写1位,最后写N位。对于8Col×Row点阵的显示屏,每个位平面存有8Col×Row位。存储器内部组织取决于驱动屏体上像素管的逻辑连线关系。根据存储器组织,读地址发生器由列驱动行,再由行驱动位;写地址发生器则采用由位驱动列、列驱动行的方式,从而可以保证读写同步性,正确地同步显示原始图像信息。

6、逻辑电路设计中的ISP技术

在早期的LED电子显示屏显示控制电路中,大量采用的是常规数字电路系统设计,用数字电路组合出复杂控制逻辑。在常规数字电路系统设计中,当电路设计完成后,须先制作电路板,然后安装元件,调试。如果电路板的逻辑功能不符合要求就必须重新设计制作电路板,再重新调试,直到实现逻辑功能为止。很显然,这种设计方法的设计周期长,成本高,且成品可靠性差,维修麻烦。利用普通可编程的逻辑器件,虽可减少印刷电路板的设计与制作,但在修改该逻辑时仍旧不能避免器件的反复插拔。

在系统可编程技术(In-SystemProgrammable,缩写ISP),是指在用户自己设计的目标系统中或电路板上为重构逻辑器件编程或反复改写的能力。常规PLD在使用中通常是先编程后装配,而采用ISP技术的PLD则是先装配后编程,成为产品之后还可以反复编程。在系统可编程技术的出现,从实践上实现了逻辑设计师们多年来梦寐以求的“硬件设计与修改软件化”的愿望,使得数字系统面貌焕然一新。采用ISP技术后,硬件设计变得像软件一样易于修改,硬件的功能可以随时加以修改或按预定的程序改变组态。这不仅扩展了器件的用途,缩短了系统调试周期,而且根除了对器件单独编程的环节,省却了器件编程设备,简化了目标设备的现场维护和升级工作。ISP技术还有一个特点是采用系统设计软件进行逻辑输入时,输入与所选器件无关。因此,在输入之前可选择任何一种器件,甚至可以选择一种“虚拟器件”(VirtualDevice)。在输入完后,再根据仿真和适配的结果选择器件。

}

基于单片机的交通信号灯设计 姓名: 学号: 专业名称:电气工程及其自动化 指导教师: 摘 要: 近年来随着科技的飞速发展,一个以微电子技术、计算机技术和通信技术为先导的信息革命正在蓬勃发展。计算机技术作为三者之一,怎样与实际应用更有效的结合并发挥其作用。单片机作为计算机技术的一个分支,正在不断的应用到实际生活中,同时带动传统控制检测的更新。在实时检测和自动控制的应用系统中,单片机往往是作为一个核心部件使用,针对具体应用对象的特点,配以其它器件来加以完善。 十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。那么靠什么来实现交通的井然秩序呢?靠的是交通信号灯的自动指挥系统,来实现交通的井然有序。交通信号灯控制方式很多。本系统采用美国ATMEL公司生产的单片机AT89S51,以及其它芯片来设计交通灯控制。实现了通过AT89S51芯片的P1口设置红、绿灯点亮的功能,通过AT89S51芯片的RXD、TXD输入、输出设置显示时间。交通灯的点亮采用发光二极管实现,时间的显示采用七段数码管实现。单片机系统采用的直流供电。为了系统稳定可靠,系统内集成了“看门狗”芯片,避免了系统因为死机而停止工作的情况发生。系统实用性强、操作简单、扩展性好。 对现有程序的扩充 19 4实验 20 4.1实验步骤 20 4.1.1 编写程序代码 20 4.1.2 按照系统硬件连线图连接好系统并调试 20 结论 22 致谢 23 参考文献 24 附件:程序代码 25 前言 今天,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。但这一技术在19世纪就已出现了。 1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。这是世界上最早的交通信号灯。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。它由红绿两块以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。 1914年,电气启动的红绿灯出现在美国。这种红绿灯由红绿黄三色圆形的投光器组成,安装在纽约市5号大街的一座高塔上。红灯亮表示“停止”,绿灯亮表示“通行”。 1918年,又出现了带控制的红绿灯和红外线红绿灯。带控制的红绿灯,一种是把压力探测器安在地下,当车辆接近时,红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下喇叭,就使红灯变为绿灯。红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。 信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。 随着经济的发展,交通运输中出现了一些传统方法难以解决的问题。道路拥挤现象日趋严重,造成的经济损失越来越大,并一直保持大比例的增长。现在交通系统已不能满足经济发展的需求。由于生活水平的提高,人们对交通运输的安全性及服务水平提出了更高的要求。在交通中管理引入单片机交通灯控制代替交管人员在交叉路口服务,有助于提高交通运输的安全性、提高交通管理的服务质量。并在一定程度上尽可能的降低由道路拥挤造成的经济损失,同时也减小了工作人员的劳动强度。 中国车辆数量不断增加,交通控制在

}

单片机课程设计显示学号以及按键实现AD,DA等功能


采用led灯管和74hc164串入并出实现51单片机对led灯数据的读写,


38译码器和AD转换器实现对电压的采集转换。
行列式按键以及蜂鸣器,采用按键中断实现上述各功能,初始上下滚动显示学号,
按键短按实现显示1234,长按显示ad,da等功能。

程序运用定时器中断等51单片机知识实现按键控制模块,AD,DA模块,LED显示模块等详细实现及注释可下载电路图及源程序文件。

}

我要回帖

更多关于 51单片机p1口控制8个led灯 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信